A system of fist order linear ODE's is

$$
\left\{\begin{array}{c}
x_{1}^{\prime}=a_{11} x_{1}+a_{12} x_{2}+111+a_{1 n} x_{n}+f_{11} \\
x_{2}^{\prime}=a_{21} x_{1}+a_{22} x_{2}+111+a_{2 n} x_{n}+f_{21} \\
\vdots \\
x_{n}^{\prime}=a_{n 1} x_{1}+a_{n 2} x_{2}+111+a_{n n} x_{n}+f_{n}
\end{array}\right.
$$

where $\left.a_{i j}, i_{j j}=1, \ldots\right)^{n}$

$$
f_{i}, i=1, \ldots, n
$$

are given functions of t and $x_{i}, i=1, \ldots, n$ are unknown functions of t.
If $f_{1}=f_{2}=14=f_{n} \equiv 0$, then the system is homogeneous; otherwise it is nonhomogeneous.

Examples:
(1) $\left\{\begin{array}{l}x_{1}^{\prime}=t x_{1}+2 x_{2}+t^{2} x_{3}+\sin t \\ x_{2}^{\prime}=e^{t} x_{1}+e^{2 t} x_{2}-3 x_{3}+\cos t-\text { a } 3 \times 3 \text { nonhomogeneous } \\ x_{3}^{\prime}=(\cosh t) x_{1}-t^{3} x_{2}+x_{3}-\sqrt{t} \quad \text { system. }\end{array}\right.$
(2) $\left\{\begin{array}{lc}x_{1}^{\prime}=2 x_{1}+3 x_{2} & - \text { a } 2 x_{2} \text { homogeneous } \\ x_{2}^{\prime}=-x_{1}+x_{2} & \text { system }\end{array}\right.$
 first spring is $x_{1}(t)$, spring constant of the $i-$ th elongation of the spring is $k_{i} j \quad m_{1}=m_{2}=0$ friction constants: γ_{1}, γ_{2} second spring is $x_{2}(t)$;

$$
\text { Second Newton's Law: }\left\{\begin{array}{l}
\gamma_{1} \dot{x}_{1}=-k_{1} x_{1}+k_{2} x_{2}, \\
\gamma_{2}\left(x_{1}+x_{2}\right)=-k_{2} x_{2} .
\end{array}\right.
$$

$$
\Rightarrow\left\{\begin{array} { l }
{ \dot { x } _ { 1 } = - \frac { k _ { 1 } } { \gamma _ { 1 } } x _ { 1 } + \frac { k _ { 2 } } { \gamma _ { 1 } } x _ { 2 } } \\
{ \dot { x } _ { 2 } = - \frac { k _ { 2 } } { \gamma _ { 2 } } x _ { 2 } - \dot { x } _ { 1 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\dot{x}_{1}=-\frac{k_{1}}{\gamma_{1}} x_{1}+\frac{k_{2}}{\gamma_{2}} x_{2} \\
\dot{x}_{2}=\frac{k_{1}}{\gamma_{1}} x_{1}-k_{2}\left(\frac{1}{\gamma_{1}}+\frac{1}{\gamma_{2}}\right) x_{2}
\end{array}\right.\right.
$$

Initial conditions: $\quad x_{1}(0)=x_{10}, x_{2}(0)=x_{20} \Rightarrow$ $2 x_{2}$ IVF: $\left\{\begin{array}{l}\dot{x}_{1}=-\frac{k_{1}}{\gamma_{1}} x_{1}+\frac{k_{2}}{\gamma_{2}} x_{2}, \\ \dot{x}_{2}=\frac{k_{1}}{\gamma_{1}} x_{1}-k_{2}\left(\frac{1}{\gamma_{1}}+\frac{1}{\gamma_{2}}\right) x_{2} .\end{array}\right.$ subject to $\quad\left\{\begin{array}{l}x_{1}(0)=x_{10,} \\ x_{2}(0)=x_{20} .\end{array}\right.$
systems can be written more compactly by using the matrix/vector notation.

An $n \times h$ matrix: A vector in \mathbb{R}^{n} :

$$
A=\left(\begin{array}{ccc}
a_{11} & . . & a_{n n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right) \quad x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

\Rightarrow Definition: $A_{x}=\left(\begin{array}{c}a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{11} x_{n} \\ \vdots \\ a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}\end{array}\right)$
\Rightarrow If we denote $x^{\prime}=\left(\begin{array}{c}x_{1}^{\prime} \\ \vdots \\ x_{n}^{\prime}\end{array}\right), F=\left(\begin{array}{c}f_{1} \\ \vdots \\ f_{n}\end{array}\right)$

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=a_{11} x_{1}+a_{12} x_{2}+\ldots 1+a_{1 n} x_{n}+f_{1} \\
x_{2}^{\prime}=a_{21} x_{1}+a_{22} x_{2}+\ldots 1+a_{2 n} x_{n}+f_{2,} \\
\vdots \\
x_{n}^{\prime}=a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}+f_{n}
\end{array} \Rightarrow x^{\prime}=A x+F\right.
$$

In this notation,
Ex I: $x^{\prime}=A x+F$, where $A=\left(\begin{array}{ccc}t & 2 & t^{2} \\ e^{t} & e^{c t} & -3 \\ \cosh t & -t^{3} & 1\end{array}\right), F=\left(\begin{array}{c}\sin t \\ \cos t \\ -\sqrt{t}\end{array}\right)$.
Ex: $x^{\prime}=A x$, where $A=\left(\begin{array}{rr}2 & 3 \\ -1 & 1\end{array}\right)$.
Ex 3: $\left\{\begin{array}{l}\dot{x}=A x_{1}, \quad \text { Here } A=\left(\begin{array}{cc}-k_{1} / \gamma_{1} & k_{2} / \gamma_{2} \\ x(0)=x_{0} .\end{array}\right) \text { and } x_{0}=\binom{x_{10}}{x_{20}} \text {. }-k_{2}\left(\frac{1}{\gamma_{1}}+\frac{1}{\gamma_{2}}\right)\end{array}\right)$.
Therefore, if $x^{\prime}=A x$, the system is homogeneans and, if $x^{\prime}=A x+F$, the system is nonhomogeneous.

Ex. Verify that $x_{1}=e^{t}\binom{1}{3}+t e^{t}\binom{4}{-4}$ and $x_{2}=e^{t}\binom{1}{-1}$
solve $x^{\prime}=\left(\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right) x$.

$$
\left.\begin{array}{l}
\text { (a) } x_{1}=\binom{e^{t}+4 t e^{t}}{3 e^{t}-4 t e^{t}} \Rightarrow x_{1}^{\prime}=\binom{e^{t}+4 e^{t}+4 t e^{t}}{3 e^{t}-4 e^{t}-4 t e^{t}} \\
=\binom{5 e^{t}+4 t e^{t}}{-e^{t}-4 t e^{t}} ; \\
\left(\begin{array}{ll}
2 & 1 \\
-1 & 0
\end{array}\right)\binom{e^{t}+4 t e^{t}}{3 e^{t}-4 t e^{t}}=\binom{2\left(e^{t}+4 t e^{t}\right)+3 e^{t}-4 t e^{t}}{-\left(e^{t}+4 t e^{t}\right.}
\end{array}\right) .
$$

(b)

$$
\begin{aligned}
& x_{2}=\binom{e^{t}}{-e^{t}} \Rightarrow x_{2}^{\prime}=\binom{e^{t}}{-e^{t}} j \\
& A x_{2}=\left(\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right)\binom{e^{t}}{-e^{t}}=\binom{2 e^{t}-e^{t}}{-e^{t}}=\binom{e^{t}}{-e^{t}}-
\end{aligned}
$$

the same as $x_{2}^{\prime} \Rightarrow x_{2}^{\prime}=A x_{2}$
(*) Superposition principle for systems: suppose that x_{1}, \ldots, x_{k} solve $x^{\prime}=4 x \Rightarrow c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{k} x_{k}$ solve $x^{\prime}=A x$ for any constants c_{1}, \ldots, c_{k}.
we will lemonstate this for 2×2 systerns. Suppose that $x_{1}=\binom{x_{11}}{x_{12}}$ and $x_{2}=\binom{x_{21}}{x_{22}}$ solve $x^{\prime}=A x$, where $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$. Then

$$
\begin{aligned}
& \text { (a) }\left(c_{1} x_{1}+c_{2} x_{2}\right)^{\prime}=\left(c_{1}\binom{x_{11}}{x_{12}}+c_{2}\binom{x_{21}}{x_{22}}\right)^{\prime}=\binom{c_{1} x_{11}+c_{2} x_{21}}{c_{1} x_{12}+c_{2} x_{22}}^{\prime} \\
& \left.=\binom{c_{1} x_{11}^{\prime}+c_{2} x_{21}^{\prime}}{c_{1} x_{12}^{\prime}+c_{21} x_{22}^{\prime}}=c_{1}\binom{x_{11}^{\prime}}{x_{12}^{\prime}}+c_{2}\binom{x_{21}^{\prime}}{x_{22}^{\prime}}=c_{1}\binom{x_{11}}{x_{12}}\right)^{\prime}+c_{2}\binom{x_{21}}{x_{22}}^{\prime} \\
& =c_{1} x_{1}^{\prime}+c_{2} x_{2}^{\prime}=c_{1} A x_{1}+c_{2} A x_{2}=c_{1}\binom{a_{11} a_{12}}{a_{21} a_{22}}\binom{x_{11}}{x_{12}} \\
& +c_{2}\binom{a_{11} a_{12}}{a_{21} a_{22}}\binom{x_{21}}{x_{22}}=c_{1}\binom{a_{11} x_{11}+a_{12} x_{12}}{a_{21} x_{11}+a_{22} x_{12}}+c_{2}\binom{a_{11} x_{21}+a_{12} x_{22}}{a_{21} x_{21}+a_{22} x_{22}} \\
& =\binom{c_{1}\left(a_{11} x_{11}+a_{12} x_{12}\right)+c_{2}\left(a_{11} x_{21}+a_{12} x_{22}\right)}{c_{1}\left(a_{21} x_{11}+a_{22} x_{12}\right)+c_{2}\left(a_{21} x_{21}+a_{22} x_{22}\right)}
\end{aligned}
$$

$$
=\binom{a_{11}\left(c_{1} x_{11}+c_{2} x_{21}\right)+a_{12}\left(c_{1} x_{12}+c_{2} x_{22}\right)}{a_{21}\left(c_{1} x_{11}+c_{2} x_{21}\right)+a_{22}\left(c_{1} x_{12}+c_{2} x_{22}\right)}=\binom{a_{11} a_{12}}{a_{21} a_{22}}\binom{c_{1} x_{1}+c_{2} x_{21}}{c_{1} x_{12}+c_{2} x_{22}}
$$

$=A\left(c_{1} x_{1}+c_{2} x_{2}\right)$ - here we use the definition of matrix vector product and properties of vector functions.
(*) Linear independence of vectors:
vectors $x_{1, \ldots,} x_{k}$ are huearly independent if

$$
c_{1} x_{1}+c_{2} x_{2}+112+c_{k} x_{k}=0 \Rightarrow c_{1}=c_{2}=111=c_{k}=0 .
$$

Otherwise the set of vectors is linearly dependent. [in other words, x_{1}, \ldots, x_{k} if out of the vectors can be written as a linear combination of other vectors from the same set]
Ex: Are vectors ($\left.\begin{array}{l}1 \\ 2\end{array}\right)$ and ($\left.\begin{array}{l}2 \\ 3\end{array}\right)$ linearly inlependent? Suppose that

$$
\begin{aligned}
& \qquad c_{1}\binom{1}{2}+c_{2}\binom{2}{3}=\binom{0}{0} \Rightarrow \\
& \left\{\begin{array} { l }
{ c _ { 1 } + 2 c _ { 2 } = 0 } \\
{ 2 c _ { 1 } + 3 c _ { 2 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
2 c_{1}+4 c_{2}=0 \\
2 c_{1}+3 c_{2}=0
\end{array} \text { subtract } \Rightarrow c_{2}=0 \Rightarrow\right.\right. \\
& c_{1}=0 \Rightarrow \text { the vectors are linearly independent. }
\end{aligned}
$$

Ex: Are

$$
\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
3 \\
2 \\
3
\end{array}\right) \text { limarly independent? }
$$

By inspection,

$$
\left(\begin{array}{l}
3 \\
2 \\
3
\end{array}\right)=3\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+2\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

- the three vectors are linearly dependent.
(*) n solutions $x_{1, \ldots}, x_{n}$ of an $n \times n$ system are linearly independent if the wronsteron

$$
w\left(x_{1} x_{2} \ldots x_{n}\right)=\left|\begin{array}{cccc}
x_{11} & x_{22} & \cdots & x_{n 1} \\
x_{12} & x_{22} & & x_{n 2} \\
\vdots & \vdots & & \vdots \\
x_{1 n} & x_{2 n} & \cdots & x_{n n}
\end{array}\right| \neq 0
$$

Ex: Are $x_{1}=e^{t}\left(\begin{array}{l}1 \\ 3 \\ 3\end{array}\right)+t e^{t}\binom{4}{-4}$ and $x_{2}=e^{t}\binom{1}{-1}$ linearly independent?

$$
\begin{aligned}
x_{1}=\binom{e^{t}+4 t e^{t}}{3 e^{t}-4 t e^{t}}, \quad x_{2}=\binom{e^{t}}{-e^{t}} \\
\Rightarrow W\left(x_{1}, x_{2}\right)=\left|\begin{array}{c}
e^{t}+4 t e^{t} e^{t} \\
3 e^{t}-4 t e^{t}-e^{t}
\end{array}\right|=-e^{t}\left(e^{t}+4 t e^{t}\right)-e^{t}\left(3 e^{t}-4 t e^{t}\right)
\end{aligned}
$$

$=-e^{2 t}-4 t e^{2 t}-3 e^{2 t}+4 t e^{2 t}=-4 e^{2 t} \neq 0 \Rightarrow$ linearly independent.
(*) Given an $n \times h$ system $x^{\prime}=A x$, if h solutions

$$
x_{1}, \ldots, x_{n}
$$

are linearly indesendent, then they form a fundamental set of solutions and the general solution of the system is $x=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{4} x_{n}$
Ex: We showed above that $x_{1}=e^{t}\binom{1}{3}+t e^{t}\binom{4}{-4}$
and $x_{2}=e^{t}\binom{1}{-1}$ are 2 linearly independent solutions of the 2×2 system

$$
x^{\prime}=\left(\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right) x \Rightarrow
$$

General solution is $x=c_{1}\left(e^{t}\binom{1}{3}+\operatorname{te}^{t}\binom{4}{-4}\right)$

$$
+c_{2} e^{t}\binom{1}{-1}
$$

Ext Solve the initial value problem

$$
\left\{\begin{array}{l}
x^{\prime}=\left(\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right) x \\
x(0)=\binom{1}{2}
\end{array}\right.
$$

Because $x(t)=c_{1}\left(e^{t}\binom{1}{3}+t e^{t}\binom{4}{-4}\right)+c_{2} e^{t}\binom{1}{-1} \Rightarrow$

$$
\begin{aligned}
& \binom{1}{2}=x(0)=c_{1}\left(e^{0}\binom{1}{3}+0 e^{0}\binom{4}{-4}\right)+c_{2} e^{0}\binom{1}{-1}=c_{1}\binom{1}{3}+c_{2}\binom{1}{-1} \\
& \Rightarrow\binom{c_{1}+c_{2}}{3 c_{1}-c_{2}}=\binom{1}{2} \Rightarrow\left\{\begin{array}{l}
c_{1}+c_{2}=1 \\
3 c_{1}-c_{2}=2
\end{array} \text { add: } 4 c_{1}=3 \Rightarrow c_{1}=\frac{3}{4}\right.
\end{aligned}
$$

\Rightarrow From the first equation $c_{2}=1-c_{1}=1-\frac{3}{4}=\frac{1}{4} \Rightarrow$

$$
x(t)=\frac{3}{4}\left(e^{t}\binom{1}{3}+t e^{t}\binom{4}{-4}\right)+\frac{1}{4} e^{t}\binom{1}{-1}=e^{t}\binom{1}{2}+3 t e^{t}\binom{1}{-1}
$$

(*) Linear homogeneous systems are equivalent to higher order homogeneous ODES:
Ex $y^{\prime \prime}+3 y^{\prime}+2 y=0 \Rightarrow$ Let $y_{1}=y, y_{2}=y^{\prime} \Rightarrow y^{\prime \prime}=y_{2}^{\prime}$

$$
\begin{aligned}
& \Rightarrow y_{2}^{\prime}+3 y_{2}+2 y_{1}=0 y_{1}^{\prime}=y_{2} \\
& \begin{cases}y_{1}^{\prime}=y_{2} & -2 x_{2} \text { system } \\
y_{2}^{\prime}=-2 y_{1}-3 y_{2}\end{cases}
\end{aligned}
$$

$\left.\begin{array}{l}\underline{\text { Ex }} x^{\prime}=\left(\begin{array}{ll}2 & 1 \\ -1 & 0\end{array}\right) x \Leftrightarrow\left\{\begin{array}{l}\left\{\begin{array}{l}x_{1}^{\prime}=2 x_{1}+x_{2} \\ x_{2}^{\prime}=-x_{1}\end{array} \Leftrightarrow \text { eliminate } x_{1}\right.\end{array} x_{1}=-x_{2}^{\prime}\right.\end{array}\right\} \begin{aligned} & x_{1}^{\prime}=2 x_{1}+x_{2} y^{\prime \prime} \\ & x_{2}^{\prime \prime}=-x_{1}^{\prime} \Rightarrow x_{2}^{\prime \prime}=-\left(2 x_{1}+x_{2}\right) \Rightarrow x_{2}^{\prime \prime}=-\left(-2 x_{2}^{\prime}+x_{2}\right)\end{aligned}$
$\Rightarrow x_{2}^{\prime \prime}-2 x_{2}^{\prime}+x_{2}=0$ - can solve this second order OSE for $x_{2} \Rightarrow x_{1}=-x_{2}^{\prime}$

