(1) Falling body:

Position of the ball at time t is

$$
x(t)
$$

Assume no air resistance $\left\{\begin{array}{r}\text { Then, at the time } t=0, \\ x(0)=x_{0} \text {-initial } \\ \text { height. }\end{array}\right.$
Want to find $x(t)$: Use the $2^{\text {nd }}$ Newton's Law, ma =F $\Rightarrow y_{i} a=-y \lg \Rightarrow a=-g$, where $g=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. Recall
(1) Position is $x(t)$, velocity is $v(t)$

$$
\Rightarrow \quad x^{\prime}(t)=v(t)
$$

(2) Velocity is $v(t)$, acceleration is a (t)

$$
\Rightarrow v^{\prime}(t)=a(t)
$$

Combining (1) and (2):

$$
x^{\prime \prime}(t)=\left(x^{\prime}(t)\right)^{\prime}=(v(t))^{\prime}=v^{\prime}(t)=a(t)
$$

$$
\Rightarrow x^{\prime \prime}(t)=-g_{A}
$$

A constant.

- this is an equation for an untenown function $x(t)$. To solve, we need to integrate:

$$
\begin{align*}
v(t) & =x^{\prime}(t)=\int x^{\prime \prime}(t) d t=-\int g d t=-g t+c_{1} \\
x(t) & =\int x^{\prime}(t) d t=\int v(t) d t=\int\left(c_{1}-g t\right) d t \\
& =\int c_{1} d t-g \int t d t=c_{1} t-g \frac{t^{2}}{2}+c_{2}
\end{align*}
$$

To determine C_{1} and C_{2}, use the condition $X(0)=x_{0}$ and also, we will assume that the bal was released from rest, i.e., $v(0)=0 \Leftrightarrow$ $x^{\prime}(0)=0$: From $(\#)$, we know that

$$
\begin{aligned}
x_{0} & =x(0)=c_{1} \cdot \frac{1}{0}-\frac{g}{4} f_{2}^{0} \\
0 & =v(0)=-g \cdot c_{2}=c_{2} \Rightarrow c_{2}=x_{0} \\
0 & \Rightarrow c_{1}=0
\end{aligned}
$$

To summarize, we solved
Imifral
value
Problem
(IMP) $\left\{\begin{array}{l}x^{\prime \prime}(t)=-g \\ x(0)=x_{0} \\ x^{\prime}(0)=0\end{array}\right\} \leftarrow$ inifferitial conditions
and the solution ended us being

$$
x(t)=x_{0}-\frac{g t^{2}}{2}
$$

(2) Radioactive decay: Initially have a radioactive sample of mass m_{0} with halflife $T_{1 / 2}$. What is the mass of the sample at true t ?
Suppose the mare of the sample at time t is $m(t)$.
Facts: (1) $m(t)$ is a decreasing function \Leftrightarrow

$$
w^{\prime}(t)<0
$$

(2) $m\left(t+T y_{2}\right)=\frac{1}{2} m(t)$, iv parton-

Cai, $m\left(T_{1 / 2}\right)=\frac{1}{2} m(0)=\frac{1}{2} m_{0}$
(3) Larger samples decay more quickly. We will make a simple assumption:
Rate of decay $=m^{\prime}(t)$
is proportional to the mass at time $t \Rightarrow m^{\prime}(t)=-k m^{\prime}(t)$
where" -" in foot of $k>0$ guaralitees decay.
(IUD)

$$
\underset{(\operatorname{IVP})}{\Rightarrow}\left\{\begin{array}{l}
m^{\prime}(t)=-k m(t)-\text { differential } \\
m(0)=m_{0} \& \text { initial condition }
\end{array}\right.
$$

Try to solve:

$$
\begin{array}{r}
m^{\prime}=-k m \Leftrightarrow m(t)=\int m^{\prime}(t) d t=-k \int m(t) d t \\
\Leftrightarrow m(t)=-k \int m(t) d t-\text { the integral cannot } \\
\text { unknown! be evalna- } \\
\text { ted explicitely }
\end{array}
$$

Try guessing the solution: try $m(t)=e_{000}^{-k t}$

$$
\Rightarrow m^{\prime}(t)=e^{-k t}(-k)=-k m(t) \quad(*)
$$

What to do with an unknown constant? can it be tune that $m(t)=e^{-l t}+c$?
then $m^{\prime}(t)=-k e^{-k t}=-k(m(t)-c)-$ wrong equation! Try $m(t)=c e^{-l e t} \Rightarrow$

$$
m^{\prime}(t)=c e^{-k t}(-k)=-k\left(c e^{-k t}\right)=-k m(t)
$$

- this m (t satisfies the correct equation (*)!

Now, solve the initial value problem:

$$
\begin{gathered}
m_{0}=m(0)=C e^{-k \cdot 0}=c \Rightarrow \\
m(t)=m_{0} e^{-k t}
\end{gathered}
$$

Note that k must be related be half-life $T_{1 / 2}$ 。
(3) Suppose that we have a bar one end of which is maintained at temperature T_{0} while the other end is at temperature T_{1}.
If initially the temperature across the bar is distributed in some srescribal way, what would the temperature be at every point in the back at any true t?

Want to know $t(x, t)$ - function of two variables.

$$
\left\{\begin{array}{l}
T(x, 0)=T_{1 n}(x) \\
T(0)=T_{0} \\
T(1)=T_{1}
\end{array}\right.
$$

instal \& boundary conditions

- this temperature profile will not change in tine.

Can conclude that $T_{t}=l_{e} T_{x x}$ diffeuntial equation
\qquad

