A differential equation is any equation that contains an unknown function and its derivatives.

Examples of differential equations:
(a) $y^{\prime}+2 y-x=0$
(b) $y^{\prime \prime} y^{\prime}+y^{2} x=\sin x$
(c) $y^{(v)}+y^{\prime \prime \prime}-y^{2}+y=e^{x}$
(d) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$

Immediately, we can classify these equations according to the type of derivatives that are involvel:
(i) Ordinary derivatives \Rightarrow ordinary differential equation (ODE)
(2) Partial derivatives \Rightarrow partial differential equation (PDE)
Hence, (a)-(c) above are ODEs and (d) is a PDE In this course we are only concerned with ODEs.
Next, we can classify differ rential equations according to the order of the highest derivative that apperirs in it \Rightarrow (a) is the firstorder ODE, (b) is the second order ODE, (c) is the ODE of order 5
and (d) is the second oLder PDE. One general consequence of the order of a given ODE is that it tells us how many indefinite integrals one needs to take to go from the highest derivative of an unknown function to the function itself. Egg., to solve the equation (a), we will need to integrate once and this will introduce an unknown constant into the solution \Rightarrow the equation (a) should have infinitely many solutions obtained by giving different values to one unknown constant. Similarly, to solve (b), we will have to integrate twice and there will be two nubnow constants. To solve (c) we will have to integrate five times so that the solution should depend on five unknown constants. To summarize, the orded of an ODE dictates the number of unknown constants that should appear in the soelution.
Example: Classify and solve the equation

$$
y^{\prime \prime \prime}=\sin x
$$

- this is a third order ODE \Rightarrow

$$
y^{\prime \prime}=\int y^{\prime \prime \prime} d x=\int \sin x d x=-\cos x+c_{1}
$$

$$
\begin{aligned}
& y^{\prime}=\int y^{4} d x=\int\left(-\cos x+c_{1}\right) d x=-\sin x+c_{1} x+c_{2} \\
& y=\int y^{\prime} d x=\int\left(-\sin x+c_{1} x+c_{2}\right) d x=\cos x+\frac{c_{1} x^{2}}{2}+c_{2} x+c_{3}
\end{aligned}
$$

- there are 3 unknown constants
we will call this a three-parameter family of solutions of our ODE.

Thus, in general, an n-th order ODE sosesses an n-parameter family of solutions.

Example: Verify that $y=c_{1} \cos x+c_{2} \sin x$ is a two-parameter family of solution of the second order ODE $y^{\prime \prime}+y=0$.
To verify, we need to substitute y into the equation. First, compute

$$
\begin{aligned}
& y^{\prime}(x)=-c_{1} \sin x+c_{2} \cos x \\
& y^{\prime \prime}(x)=-c_{1} \cos x-c_{2} \sin x \\
\Rightarrow & y^{\prime \prime}(x)+y(x)=-c_{1} \cos x-c_{2} \sin x+c_{1} \cos x+c_{2} \sin x=0 \\
\Rightarrow & y=c_{1} \cos x+c_{2} \sin x \text { solves } y^{\prime \prime}+y=0 \text { for any } \\
& \text { combination of } c_{1}, c_{2}
\end{aligned}
$$

$\Rightarrow y=c_{1} \cos x+c_{2} \sin x$ is a two-parameter family of solutions of $y^{\prime \prime}+y=0$
clearly, if we choose $c_{1}=1, c_{2}=0$, then $y=\cos x$ is a solution of $y^{\prime \prime}+y=0$ that does not involve any unknown constants. This is a particular solution of $y^{\prime \prime}+y=0$. Other examples of particular solutions of $y^{\prime \prime}+y=0$ are $y=\sin x, y=\sin x+\cos x, y=2 \sin x-\cos x$, etc.

Example: Find a particular solution of $y^{\prime \prime}+y=0$ that satisfies the conditions $y(0)=1, y^{\prime}(0)=-1$
To solve, use the two parameter family of solutions we found above:

$$
\begin{gathered}
y(x)=c_{1} \cos x+c_{2} \sin x \Rightarrow y^{\prime}(x)=-c_{1} \sin x+c_{2} \cos x \\
1=y(0)=c_{1} \cos 0+c_{2} \sin 0=c_{1} \\
-1=y^{\prime}(c)=-c_{1} \sin 0+c_{2} \cos 0=c_{2} \\
\Rightarrow c_{1}=1, c_{2}=-1 \Rightarrow y(x)=\cos x-\sin x
\end{gathered}
$$

In general, an n-th order ODE can be written in a form

$$
F\left(x, y, y^{\prime}, \cdots, y^{(n-1)}, y^{(n)}\right)=0
$$

where F is some function of $n+2$ variables, for example,

$$
x^{2} y^{\prime \prime}+2 x y-1=0 \quad \text { or } \quad e^{x} y^{\prime}+y^{2}=0
$$

These equation can be solved for their highest derivative to obtain

$$
y^{\prime \prime}=\frac{1-2 x y}{x^{2}} \text { or } y^{\prime}=-e^{-x} y^{2}
$$

we will then say that these equations are written in their normal form:

$$
y^{(n)}=f\left(x, y, y^{\prime}, \cdots, y^{(n-1)}\right)
$$

classification by linearity: Any equation of the form \downarrow any functions of $x \rightarrow$

$$
\left.a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+11\right)+a_{1}(x) y^{\prime}+a_{0}(x) y=f(x)
$$

is a linear equation. All other equations are called nonlinear. For example:

$$
\begin{aligned}
& x^{2} y^{\prime \prime}+x y^{\prime}+y=\sin x-\text { second order, linear ODE. } \\
& x y^{(5)}+x^{2} y^{\prime \prime}-x y^{\prime}=0-f \text {-fthorder, linear ODE. } \\
& x y^{\prime \prime}+\sin x y^{2}=y-\text { second order, non linear ODE. } \\
& y y^{\prime}+y^{\prime \prime \prime}=y^{2} \text { - third order, non linear ODE. }
\end{aligned}
$$

More examples: (*) verify that $y=x^{3}$
solves $x^{2} y^{\prime \prime}-x y^{\prime}-3 y=0$ and classify the ODE.
This is a second order, linear ODE. To checte if x^{3} is a solution, substitute into the $O D E$:

$$
\begin{aligned}
& y^{\prime}=3 x^{2}, y^{\prime \prime}=6 x \Rightarrow \\
& x^{2} y^{4}-x y^{\prime}-3 y=x^{2} \cdot 6 x-x \cdot 3 x^{2}-3 x^{3}=0
\end{aligned}
$$

(*) Verify that $x^{2}+y^{2}=1$ is a solution of
the ODE $y y^{\prime}+x=0$. This is a first order noulinear ODE. We need to substitute the given function into the ODE, however, the function $y(x)$ is given by $x^{2}+y^{2}=1$ implicitly. Need totaled the derivative implicitly:

$$
\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}(1) \Rightarrow \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(y^{2}\right)=0
$$

chain
back into the equation:

$$
y y^{\prime}+x=y\left(-\frac{x}{y}\right)+x=-x+x=0
$$

$\therefore \quad x^{2}+y^{2}=1$ is an implicit solution of

$$
y y^{\prime}+x=0
$$

