Consider an n-th order differential equation in the normal form:

$$
\frac{d^{n} y}{d x^{n}}=f\left(x, y, \frac{d y}{d x}, \cdots, \frac{d^{(n-1)} y}{d x^{n-1}}\right)
$$

In the previous lecture we learned that a solution to this problem will generally depend on n generic constants c_{1}, \ldots, c_{n} so that we need to specify n additional conditions to find a particular solution to our ODE. One way to do this is to specify the values of y and its deriratives at some "initial" value of x, for example:

$$
\left.\begin{array}{c}
y\left(x_{0}\right)=y_{0} \quad \\
y^{\prime}\left(x_{0}\right)=y_{1} \\
\vdots \\
y^{(n-1)}\left(x_{0}\right)=y_{n-1}
\end{array}\right\}-n \text { conditions }
$$

\Rightarrow Want to solve the initial value problem (Ivs)

$$
\left\{\begin{array}{l}
\frac{d^{n} y}{d x^{n}}=f\left(x, y, \frac{d y}{d x}, \cdots, \frac{d^{(n-1)} y}{d x^{n-1}}\right) \\
y\left(x_{0}\right)=y_{0} \\
y^{\prime}\left(x_{0}\right)=y_{1} \\
\vdots \\
y^{(n-1)}\left(x_{0}\right)=y_{n-1}
\end{array}\right.
$$

Example from physics: Recall that is the first lecture we considered a ball falling to the ground from rest. If the altitude of the ball of time t is $x(t)$, then the velocity of the ball is $x^{\prime}(t)$ and its acceleration is $x^{\prime \prime}(t)$. Then, from the $2^{\text {nd }}$ Newton's Law:

$$
x^{\prime \prime}(t)=-g-2^{n d} \text { order ODE }
$$

while $x(0)=x_{0}$-initial altitude

$$
x^{\prime}(0)=0 \text { - initial velocity } \Rightarrow
$$

$x(t)$ can be found by solving the IVP

$$
\left\{\begin{array}{l}
x^{\prime \prime}=-y \\
x(0)=x_{0} \quad-\text { second oudec IVP } \\
x^{\prime}(0)=0
\end{array}\right.
$$

Geometric example: Suppose that we know that the slope of a curve when it passes through any point (x, y) on the $x y$-plane is equal to y / x. If we wont to reconstruct such a curve from a starting point $\left(x_{0}, y_{0}\right)$, then we need to solve the IVA

$$
\left\{\begin{array}{l}
y^{\prime}=y / x \quad \text {-first order IVP } \\
y\left(x_{0}\right)=y_{0}
\end{array}\right.
$$

Let $\left(x_{0}, y_{0}\right)=(1,2) \Rightarrow$ solve

$$
\left\{\begin{array}{l}
y^{\prime}=y / x \quad \\
y(1)=2
\end{array} \quad \Rightarrow y=2 x\right. \text { is the }
$$

Observation: $y=k x$ is

$$
\begin{aligned}
& y^{\prime}(1,2)=\frac{2}{1}=2 \\
& y^{\prime}(1,1)=\frac{1}{1}=1 \\
& x \\
& y^{\prime}(2,2)=\frac{2}{2}=1
\end{aligned}
$$

(*) Find all points of xy-plane where the slope $=1$:
a solution for all k :

$$
y / x=1 \Rightarrow y=x
$$

(*) Find all points of
Test: $y^{\prime}=k=\frac{k x}{x}=\frac{y}{x} . \quad V$ $x y$-plane where the slope $=2$:

$$
y / x=2 \Rightarrow y=2 x
$$

Example: Verify that $y^{\prime \prime}-4 y=0$ has a two-parameter family of solutions $y=c_{1} e^{-2 x}+c_{2} e^{2 x}$. solve the initial value problems:

$$
(I)\left\{\begin{array} { l }
{ y ^ { \prime \prime } - 4 y = 0 } \\
{ y (0) = 1 } \\
{ y ^ { \prime } (0) = 0 }
\end{array} \quad \text { and } (I I) \quad \left\{\begin{array}{l}
y^{\prime \prime}-4 y=0 \\
y(1)=0 \\
y^{\prime}(1)=e^{2}
\end{array}\right.\right.
$$

$$
\begin{aligned}
& y^{\prime}=c_{1} e^{-2 x}(-2)+c_{2} e^{2 x} \cdot 2=2\left(-c_{1} e^{-2 x}+c_{2} e^{2 x}\right) \\
& y^{\prime \prime}=c_{1} e^{-2 x}(-2)^{2}+c_{2} e^{2 x} \cdot 2^{2}=4\left(c_{1} e^{-2 x}+c_{2} e^{2 x}\right) \\
& y^{\prime \prime}-4 y=4\left(c_{1} e^{-2 x}+c_{2} e^{2 x}\right)-4\left(c_{1} e^{-2 x}+c_{2} e^{2 x}\right)=0
\end{aligned}
$$

- y is is a solution for an arbitrary choice of C_{1} and c_{2}

$$
\begin{array}{ll}
\text { Solve (I): } & 1=y(0)=c_{1} e^{-2 \cdot 0}+c_{2} e^{2 \cdot 0}=c_{1}+c_{2} \\
& 0=y^{\prime}(0)=2\left(-c_{1} e^{-2 \cdot 0}+c_{2} e^{2 \cdot 0}\right)=2\left(-c_{1}+c_{2}\right) \\
\Rightarrow \begin{cases}c_{2}-c_{1}=0 \\
c_{2}+c_{1}=1 & \Rightarrow 2 c_{2}=1 \Rightarrow c_{2}=\frac{1}{2} \Rightarrow c_{1}=c_{2}=\frac{1}{2}\end{cases}
\end{array}
$$

\Rightarrow solution to (I) is $y(x)=\frac{1}{2} e^{-2 x}+\frac{1}{2} e^{2 x}$
Solve (II): $0=y(1)=c_{1} e^{-2 \cdot 1}+c_{2} e^{2 \cdot 1}=c_{1} e^{-2}+c_{2} e^{2}$

$$
\left.\begin{array}{l}
e^{2}=y^{\prime}(1)=2\left(-c_{1} e^{-2 \cdot 1}+c_{2} e^{2 \cdot 1}\right)=2\left(-c_{1} e^{-2}+c_{2} e^{2}\right) \\
\Rightarrow\left\{\begin{array}{l}
c_{1} e^{-2}+c_{2} e^{2}=0 \\
-c_{1} e^{-2}+c_{2} e^{2}=\frac{1}{2} e^{2}
\end{array} \Rightarrow 2 c_{2} e^{4}=\frac{1}{2} e^{x}\right.
\end{array}\right\} \begin{gathered}
c_{1} e^{-2}+c_{2} e^{2}=0 \Rightarrow c_{2}=\frac{1}{4} \quad c_{1}=-c_{2} e^{2} / e^{-2}=-c_{2} e^{4}=-\frac{1}{4} e^{4} \\
\Rightarrow y(x)=-\frac{1}{4} e^{4} e^{-2 x}+\frac{1}{4} e^{2 x}
\end{gathered}
$$

Example: Verify that $y^{\prime}+3 x^{2} y^{2}=0$ has a one-parameter family of solutions $y=\left(x^{3}+c\right)^{-1}$ and find solutions of IVP:

$$
\text { I) }\left\{\begin{array} { l }
{ y ^ { \prime } + 3 x ^ { 2 } y ^ { 2 } = 0 } \\
{ y (0) = 1 }
\end{array} \quad \text { and (II) } \left\{\begin{array}{l}
y^{\prime}+3 x^{2} y^{2}=0 \\
y(1)=0
\end{array}\right.\right.
$$

what are the intervals of definition for each of these problems?

$$
y(x)=\left(x^{3}+c\right)^{-1} \Rightarrow y^{\prime}=-\left(x^{3}+c\right)^{-2} \cdot 3 x^{2}
$$

substitute these into the ODE

$$
\begin{aligned}
y^{\prime}+3 x^{2} y^{2} & =-3 x^{2}\left(x^{3}+c\right)^{-2}+3 x^{2}\left(\left(x^{3}+c\right)^{-1}\right)^{2} \\
& =-3 x^{2}\left(x^{3}+c\right)^{-2}+3 x^{2}\left(x^{2}+c\right)^{-2}=0
\end{aligned}
$$

Hence $y(x)=\left(x^{3}+c\right)^{-1}$ is a one-parameter family of solutions of $y^{\prime}+3 x^{2} y^{2}=0$
Solve (I): $1=y(0)=\left(0^{3}+c\right)^{-1} \Rightarrow c=1 \Rightarrow$
solution of (I) is $y(x)=\left(x^{3}+1\right)^{-1}$
Solve (II): $0=y(1)=\left(1^{3}+c\right)^{-1} \Rightarrow 0=\frac{1}{c+1}-$ cannot solve for C! $\Rightarrow=\begin{aligned} & \text { cannot find } \\ & \text { a solution from } \\ & \text { i-parameter fan }\end{aligned}$ i-farameter family.

Note that $y=0$ is a solution of (II) but it is not of the form $y=\left(x^{3}+c\right)^{-1}$.

Example: Show that $y=0, y=x^{3}$, and
$y=\left\{\begin{array}{l}x^{3}, x \geqslant 0 \\ -x^{3}, x<0\end{array}\right.$ all solve the IVP

$$
\left\{\begin{array}{l}
y^{\prime}=3 x y^{1 / 3} \\
y(0)=0
\end{array}\right.
$$

(1)

$$
y \equiv 0 \Rightarrow y^{\prime}=0 \Rightarrow
$$

(2) $y=x^{3} \Rightarrow y^{\prime}=3 x^{2}$
 the initial condition.

$$
3 x y^{1 / 3}=3 x\left(x^{3}\right)^{1 / 3}=3 x \cdot x=3 x^{2}
$$

$\Rightarrow y^{\prime}=3 x y^{1 / 3}-$ equation is satisfied
also, $y(0)=0^{3}=0 \Rightarrow y=x^{3} \operatorname{solves}(I V P)$
(3) If $y=-x^{3} \Rightarrow y^{\prime}=-3 x^{2}$ and

$$
\begin{aligned}
& 3 x y^{1 / 3}=3 x\left(-x^{3}\right)^{1 / 3}=-3 x\left(x^{3}\right)^{1 / 3}=-3 x^{2} \\
& \Rightarrow y=-x^{3} \text { solves } y^{\prime}=3 x y^{1 / 3}
\end{aligned}
$$

also $-(0)^{3}=0$ - the initial condition is satisfied $\Rightarrow y=-x^{3}$ do solves

EXP.

\therefore IVP has at least y solutions

Example: Show that the IVP

$$
\left\{\begin{array}{l}
y^{\prime}=(x+y)^{1 / 2} \\
y(0)=-1
\end{array}\right.
$$

has no solutions.
at the initial point $(0,-1): y^{\prime}=(0+(-1))^{1 / 2}$-undefined - no solution.
want to know whether a solution of an initial value problem

$$
\text { (IUP) }\left\{\begin{array}{l}
y^{\prime}=f(x, y) \\
y\left(x_{0}\right)=y_{0}
\end{array}\right.
$$

exists and is unique.

Suppose that there exists a rectangle R containing $(x, y o)$ and such that $f(x, y)$ and $f_{y}(x, y)$ are both continmons on R. Then (IVP) has the unique solution.
Example: Does $\begin{cases}y^{\prime}+3 x^{2} y^{2}=0 \\ y(0)=1 & \text { have a unique } \\ \text { solution? }\end{cases}$
Write the equation in the normal form:

$$
\begin{aligned}
& y^{\prime}=-3 x^{2} y^{2} \Rightarrow f(x, y)=-3 x^{2} y^{2} \\
& \frac{\partial f}{\partial y}=-6 x y
\end{aligned}\left\{\begin{array}{l}
\text { - both of these } \\
\text { are continuous } \\
\text { everywhere. }
\end{array}\right.
$$

\Rightarrow IVP has a unique solution.
Example: Does the solution of $\left\{\begin{array}{l}y^{\prime}=3 x y^{1 / 3} \\ y(0)=0\end{array}\right.$ exist? Is if unique?
In this case, $f(x, y)=3 x y^{1 / 3}$ - contimous for
all $(x, y) \cdot \frac{\partial f}{\partial y}=3 \cdot \frac{1}{3} x y^{1 / 3-1}=x y^{-2 / 3}$ - conturous as long as $y \neq 0$
$\int^{x^{y} \frac{\partial f}{\partial y} \text { is discontinuous on any }}$ rectangle containing $(0,0) \Rightarrow$
cannot guarantee existence and uniqueness of a solution to IVP.

Fact: Suppose that

$$
\left\{\begin{array}{l}
y^{\prime}=f(x, y) \\
y^{\left(x_{0}\right)}=y_{0}
\end{array}\right.
$$

has a unique solution.
 the ODE, this situation cannot happen.
\Rightarrow If any initial value problem associated with an

ODE has a unique solution, then any two solution curves cannot intersect.

