Given the ODE:

y = f(x,y),note, that the ODE specifies the slope of a tongent line to a mive that passes through a point (x,y). We can then plot a segment of a tangent line at each (x, y) where the function f is defined to give us the direction field associated with y'=f(x,y); We can then use the direction field to graphically solve initial value problems. Sketch the direction field of Example: y'= x and use it to draw the solution are for the IVP y=x=>y=Sxdx $\in \begin{cases} \mathfrak{Z}' = \mathsf{X} \\ \mathfrak{Z}(\mathfrak{l}) = \mathfrak{l} \end{cases}$ $= \frac{x^2}{2} + c_{j} = y(1)$ = = + く => く= と => ソンジナン・ Find all points where (a) y = 1 : since y = x => (=y/=x=) x=1 X - vertical line through X=1. (b) y'=-1: -1=y'=x =) x=-1 C=2 C=1 C=1 C=2

(c) Find all points where
$$y'=c$$
 - constant =)
looking at all points where $x=c$ - vertical lines.
Example: Sketch the direction field of
 $y'=-\frac{x}{3}$ and use it to draw the
Check: $2x+23d=0$ solution arrive for the IVP
 $y'=-\frac{x}{3}$
solution seems $\{y'=-\frac{x}{3}\}$
solution seems $\{y'=-\frac{x}{3}\}$
 $y'=-\frac{x}{3}$
 $y'=-\frac{x}{3}$

Example: Sketch the direction field of

$$y'=x^2y^2$$
 and use it to draw the
colution arrive for the IVP
 $y'=x^2y^2$
 $y(t)=t$
Find all points where $y'=c^2$: $x^2y^2=c^2$ -circle of
radius C.
 $y'=c^2z^2$ sloper on circles
 $y'=f(y) - f(y) - f(y)$ additioner
 $y'=f(y) - f(y) - f(y)$
Examples of antonomous equations:
 $y'=y(t-y), (c) y'=siny$
On the other hand, $y'=x+y$ is not autonomous.

suppore
$$y' = f(y)$$
 while f and $f'(y)$ are continuous
functions of y. Then recall that
 $y' = f(y)$
 $y' = f(y)$
 $y' = f(y)$
has a unique solution for any $(x_0y_0) \Rightarrow$ any two
solution curves of $y' = f(y)$ do not intersect.
Note: (hif $f(y) > 0$, then $y' > 0 \Rightarrow$ a solution curve
passing through (x,y) is T
(2) if $f(y|<0$, then $y'<0 \Rightarrow$ a solution curve
passing through (x,y) is t
(3) Also, suppose that $f(y_0) = 0 \Rightarrow$ set $y = y_0$
 $y' = 0 = f(y_0) = f(y)$
 $= y = y_0$ is a constant solution of $y' = f(y)$
 $- call$ these equilibrium solutions of $y' = f(y)$
shetch the diagram: $f(y|<0)$ $y'<0$ y_1
 $f<0$ of the diagram: $f(y|<0)$ $y'<0$ y_1
 $f<0$ of the diagram of $y' = f(y)$
 $f(y) = f(y) = f(y) = f(y) = f(y)$
 $y' = 0 = f(y) = f(y) = f(y)$
 $y' = 0 = f(y) = f(y) = f(y)$
 $f = 0$ of the diagram of $y' = f(y)$
 $f = 0$ of the diagram of $y' = f(y) = f(y) = f(y)$
 $f = 0$ of the diagram of $y' = f(y) = f(y)$
 $f = 0$ of the diagram of $y' = f(y) = f(y) = f(y)$
 $f = 0$ of the diagram of $y' = f(y) = f(y) = f(y)$

y, y_ are constant equilibrium solutions. 12 yr yı If we start solving at y slightly greater than 42 => 95 × + 20 y + 42 If we start solving at y slightly less than H2 => as x+ as y+ y2 If we start solving at y slightly greater than y1 => as x → ∞ y goes away from y1-If we start solving at y slightly less than $y_2 = 3 x \rightarrow \infty y$ goes away from y1. We call yz an attractor, y, a repeller.

Example:
$$y' = y(y-1)(y-2) - autonomous ODE
(2h.s. is independent
 $f(y) = 0 \Leftrightarrow y(y-1)(y-2) = 0$
 $\Rightarrow y=0, y=1, y=2 - are equilibrium solutions
 $of the ODE.$
 $f(y) A^{\frac{1}{2}} y' \frac{y}{y}$
 $\oplus \oplus ^{\frac{1}{2}} unl.$
 $\oplus ^{\frac{1}{2}} unl.$
 $\oplus$$$$

