Given the ODE:

$$
y^{\prime}=f(x, y)_{2}
$$

note, that the ODE specifies the slope of a tangent line to a curve that passes through a point (x, y). We can then plot a segment of a tangent line at each (x, y) where the function f is defined to give us the direction field associated with $y^{\prime}=f(x, y) j$ we can then use the direction field to graphically solve initial value problems.

Example: Sketch the direction field of $y^{\prime}=x$ and use if do draw the solution curve for the IVP

$$
\begin{aligned}
& y^{\prime}=x \Rightarrow y=\int x d x \\
& =\frac{x^{2}}{2}+c ; 1=y(1) \\
& =\frac{1}{2}+c \Rightarrow c=\frac{1}{2} \\
& \Rightarrow y=\frac{x^{2}}{2}+\frac{1}{2} .
\end{aligned}
$$

Find all points where
(a) $y^{\prime}=1$: since $y^{\prime}=x$

$$
\Rightarrow 1=y^{\prime}=x \Rightarrow x=1
$$

- vertical line through $x=1$.
(b) $y^{\prime}=-1:-1=y^{\prime}=x \Rightarrow x=-1$
(c) Find all points where $y^{\prime}=c$-constant \Rightarrow looking of all points where $x=c$ - vertical lines.
Example: Sketch the direction field of $y^{\prime}=-\frac{x}{y}$ and use it do draw the
Check: $2 x+2 y y^{\prime}=0$ solution curve for the IVP

$$
\Rightarrow y^{\prime}=-\frac{x}{\pi} / y v
$$

$\pi=-x / y v$
solution seems
to be $x^{2}+y^{2}=2$$\quad\left\{\begin{array}{l}y^{\prime}=-\frac{x}{y} \\ y(1)=1\end{array}\right.$

Note: no particular direction at the origin!

$$
\begin{array}{ll}
c=-1, y=x ; & c=1 \Rightarrow y=-x \\
c=-\frac{1}{2}, y=2 x ; & c=2 \Rightarrow y=-\frac{1}{2} x \\
c=-2, y=\frac{1}{2} x ; & c=\frac{1}{2} \Rightarrow y=-2 x
\end{array}
$$

Example: sketch the direction field of $y^{\prime}=x^{2}+y^{2}$ and use if do draw the solution curve for the IVP

$$
\left\{\begin{array}{l}
y^{\prime}=x^{2}+y^{2} \\
y(1)=1
\end{array}\right.
$$

Find all paints where $y^{\prime}=c^{2}: x^{2}+y^{2}=c^{2}$-circle of radius C.

Antonomons equations.
Def: A first order ODE is autonomous of

$$
y^{\prime}=f(y)-f \text { is independent of } x
$$

Examples of autonomous equations:

$$
\text { (a) } y^{\prime}=y,(b) y^{\prime}=y(1-y),(c) y^{\prime}=\sin y
$$

On the other hand, $y^{\prime}=x+y$ is not autonomous.
suppose $y^{\prime}=f(y)$ while f and $f^{\prime}(y)$ are continuous functions of y. Then recall that

$$
\left\{\begin{array}{l}
y^{\prime}=f(y) \\
y\left(x_{0}\right)=y_{0}
\end{array}\right.
$$

has a unique solution for any $\left(x_{0}, y_{0}\right) \Rightarrow$ any two solution curves of $y^{\prime}=f(y)$ do not intersect.
Note: (1 if $f(y)>0$, then $y^{\prime}>0 \Rightarrow$ a solution curve passing through (x, y) is \uparrow
(2) if $f(y)<0$, then $y^{\prime}<0 \Rightarrow$ a solution curve passing through (x, y) is ψ
(3) Also, suppose that $f\left(y_{s}\right)=0 \Rightarrow$ set $y=y_{s}$

- a constant function, so that $y^{\prime}=0 \Rightarrow$

$$
y^{\prime}=0=f\left(y_{s}\right)=f(y)
$$

$\Rightarrow y=y_{s}$ is a constant solution of $y^{\prime}=f(y)$

- call these equilibrium solutions of $y^{\prime}=f(y)$.

y_{1}, y_{2} are constant equilibrium solutions.

If we start solving at y slightly greater than

$$
y_{2} \Rightarrow \text { as } x \rightarrow \infty \quad y \rightarrow y_{2}
$$

If we start solving at y slightly less than

$$
y_{2} \Rightarrow \text { as } x \rightarrow \infty \quad y \rightarrow y_{2}
$$

If we start solving at y slightly greater than $y_{1} \Rightarrow$ as $x \rightarrow \infty$ y goes away from y_{1}.
If we start solving at y slightly less than $y_{2} \Rightarrow$ as $x \rightarrow \infty$ y goes away from y_{1}.
We call y_{2} an attractor, y_{1} a reseller.

Example: $y^{\prime}=y(y-1)(y-2)$ - autonomous ODE. (2.h.s. is independent

$$
f(y)=0 \Leftrightarrow y(y-1)(y-2)=0
$$ of x).

$\Rightarrow y=0, y=1, y=2$ - are equilibrium solutions of the ODE .

Example: $\quad y^{\prime}=\sin y$ - autonomous $O D E$
(1) Find equilibrium solutions:

$$
\sin y=0
$$

$\Rightarrow y=\pi h, n$ is an integer
$\Rightarrow \infty$ many equilibrium solutions.
(2)

$f(y)$	x	y^{\prime}	y
\vdots	-2π	θ	y
\oplus	$-\pi$	\oplus	x
Θ	-0	Θ	6
\oplus	$-\pi$		
	-2π		
\vdots			

(3)

