Suppose that the function $y^2 + x^3 - x = 1$ is specified implicitly. What kind of ODE will a function like this satisfy? Take an implicit derivative : $\frac{d}{dx}\left(\frac{d^2+x^2-x}{dx}\right) = \frac{d}{dx} = 0$ us an equation for the implicit devivative, but (*) can also be thought of as an ODE $243 + 3x^{2} - 1 = 0$ that our implicit function is a solution of. This ODE is also a separable equation: zydy = - (3x-1) dx - can solve this by integrating both sider, Also note that, if we replace I by c in the definition of the implicit function we still get (*) after taking an implicit

derivative => y²+x³-x = c is a one-pera-

mater family of solutions (or the general
solution) of (*).
Let's now see what ODE the general
implicit expression

$$F(x,y) = C$$
 would satisfy.
Since y is a function of x, we can write
 $F(x,y(x)) = C$ for all x.
Now take the derivative of both sides writ.
x (using the multidimensional chain cule):
 $OE = \frac{1}{2} + OE = 0 - this is called
the firs order
ean also write it in this
form:
 $OE = 10 + OE$
 $OE = 10 + OE$$

It will be exact if there exists a function
F(x,g) s.t. P(x,g) =
$$\frac{3}{5x}$$
 and $Q(x,g) = \frac{3}{5y}$
Mow would we know that such function exists?
If it does =)
 $\frac{3p}{3g} = \frac{3}{3g} (\frac{3p}{3x}) = \frac{3p}{39x}$
 $\frac{3p}{3g} = \frac{3}{3g} (\frac{3p}{3x}) = \frac{3p}{39x}$
 $\frac{3p}{3g} = \frac{3p}{3x} (\frac{3p}{3g}) = \frac{3p}{3xy}$
 $\frac{3p}{3g} = \frac{3p}{3x} (\frac{3p}{3g}) = \frac{3p}{3xy}$
It turns out that the reverse is also ture:
If $\frac{3p}{3g} = \frac{3q}{3x}$ and there partials are continuous,
then $P = \frac{3p}{3x}$ and $Q = \frac{3p}{3y}$
 $=$) The ODE Pdx+Qdy = 0 is exact if
 $\frac{3p}{3g} = \frac{3q}{3x}$
Ex. Is the equation $x^2dx + \cos_y dy = 0$ exact?
If ges, find the general solution.
We have that $P(xg) = x^2$ and $Q(x,g) = \cos g =$)
 $\frac{3p}{3g} = 0$, $\frac{3q}{3x} = 0$ so that $\frac{3p}{3g} = \frac{30}{3x} -$ the ODE is exact.

Because the ODE is exact, there exists a function

$$E(x,y)$$
 such that
 $\frac{\partial F}{\partial x} = P(xy) = x^{2}, \frac{\partial F}{\partial y} = Q(xy) = \cos y$
To find F , integrate the first equation in x while
holding y fixed:
 $F(x,y) = \int_{\partial x}^{\partial F} dx = \int x dx = \int x^{2} dx = \frac{x^{3}}{3} + C(y)$
- note that C may depend on y because y is being
held constant. To find $C(y)$ we take the derivative
of F w.r.t. y :
 $\frac{\partial F}{\partial y} = \frac{\partial}{\partial y} (\frac{x}{3} + C(y)) = C'(y) = Q = \cos y$
 $\Rightarrow C'(y) = \cos y \Rightarrow C(y) = \int \cos y dy = \sin y$
 $F(x,y) = \frac{x^{3}}{3} + \sin y$
Recall that $F(x,y) = C$ is the general solution of the exact
equation $\frac{GF}{\partial y} + \frac{\partial F}{\partial x} dx = 0 \Rightarrow our general solution is$
 $\begin{bmatrix} \frac{x^{3}}{3} + \sin y = C \\ \frac{x^{3}}{3} + \sin y = C \end{bmatrix}$
Suppose now that we have a separable equation
 $y' = f(x)g(y) = 0$

$$\frac{du}{dx} = f(x)g(y) \Rightarrow \frac{du}{dx} = f(x)dx \Rightarrow f(x)dx - \frac{1}{dy} dy = 0$$

$$\frac{du}{dx} = f(x)g(y) \Rightarrow \frac{du}{dy} = f(x)dx \Rightarrow f(x)dx - \frac{1}{dy} dy = 0$$

$$\frac{du}{dx} = \frac{2}{2}g(f(x)) = 0$$

$$\frac{du}{dx} = \frac{2}{2}g($$

=)
$$c'(x) = x \Rightarrow c(x) = \frac{x^2}{2} \Rightarrow F(xy) = -(\frac{x}{2} + sxy) + \frac{x}{2}$$

Thus the general solution of the ODE
 $-(\frac{x}{2} + sxy) + \frac{x}{2} = c$
 $-the solution is in the implicit form.$
Ex. Solve the initial value problem
 $\int (x - sy) dx - (\frac{x}{2} + sx) dy = 0$
 $\int (\frac{x}{2} + 0) = 1$
From the previous example, the general solution is
 $-(\frac{x}{2} + sxy) + \frac{x}{2} = c \Rightarrow -(\frac{x}{2} + \frac{x}{2} + \frac{x}{2}) + \frac{x^2}{2} = c \Rightarrow c = -e$
 \Rightarrow solution of the TVP is $-(\frac{x}{2} + sxy) + \frac{x}{2}^2 = -e$
Ex. Is the equation $(\frac{x}{2} + \frac{x}{2} - \frac{x}{2}) + \frac{x}{2} + \frac{x}{2}$

 $\left(\frac{\partial P}{\partial y} = \frac{\partial}{\partial y}\left(y\ln y - e^{-xy}\right) = \ln y + y \cdot \frac{1}{y} - e^{-xy}\left(-x\right)$ = lny +1 + xe^{-xy} $\frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} \left(\frac{1}{y} + x \ln y \right) = \ln y = 0$ ∂P ≠ ∂Q - the equation is not ∂y ≠ ∂x exact. Ex. Is the equation $3xy^2y + (x^3+y^3)dx = 0$ exact? If yes, find the general solution. $3xy^{2}ly + (x^{3}+y^{3})dx = 0 =) \xrightarrow{\partial P} = \frac{\partial}{\partial y} (x^{3}+y^{3}) = 3y^{2}$ $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \in \frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} \left(3xy^2 \right) = 3y^2$ - equation is exact =) P= == F/2x Q=== F/2y $\frac{\partial F}{\partial X} = X^3 + y^3$, $\frac{\partial F}{\partial Y} = 3 \times y^2$ =) $F(x,y) = \int (x^{3}+y^{3}) dx = \frac{x^{4}}{4} + y^{3}x + C(y)$ $3xy^2 = \frac{\partial F}{\partial y} = 3y^2 x + c'(y) = 2c = 0$ $F(x,y) = \frac{x^{4}}{y} + y^{3}x = C$

Ex. Is the equation $(1 + \ln x + \frac{3}{x}) dx = (1 - \ln x) dy$ exact? If yes, find the general solution. $(1+\ln x+\frac{3}{x})dx = (1-\ln x)dy$ $\frac{(1+\ln x+\frac{y}{x})}{x} = \frac{1}{x} = \frac{1}{x}$ P $\frac{2}{9y} = \frac{2}{9x} \leftarrow \frac{2}{9x} = \frac{2}{9x} (lnx-1)$ - equation is = $\frac{1}{x}$ exact Q $\rightarrow \frac{\partial F}{\partial x} = 1 + \ln x + \frac{3}{x}$ $\frac{\partial F}{\partial y} = \ln x - 1$ =) $F(x,y) = \int (hx-i) dy$ = (lux-1)y + C(x) $1 + \ln x + \frac{y}{x} = \frac{\partial F}{\partial x} = \frac{\partial}{\partial x} \left((\ln x - i) y + C(x) \right) = \frac{y}{x} + C'(x)$ =) $c'(x) = lnx + 1 =) c(x) = \int (lnx + i) dx$ $= \int \ln x \, dx + \int 1 \, dx = \int \ln x \, dx + \chi \left(\frac{y - \ln x}{dy - dx} \frac{dx}{x} \right)$ = $\times \ln x + x - \int \frac{dx}{x} = \times \ln x + x - x = \times \ln x$ =) $F(x,y) = \left(\ln x - i \right) y + x \ln x = c \right)$

Ex. Solve the initial value problem

 $\int x \frac{dy}{dx} = 2xe^{x} - y + 6x^{2}$ $\int y(x) = 0$

 $\frac{x \, dy}{dx} = 2xe - y + 6x^2 = x \, dy = (2xe^{x} - y + 6x^2) \, dx$ $=) (2xe^{x} - y + 6x^{2}) dx - x dy = 0$ $P \qquad Q \qquad =) \frac{2P}{2y} = -1 ($

$$\frac{\partial F}{\partial x} = 2xe^{x} - y + 6x^{2}, \quad \frac{\partial F}{\partial y} = -x$$

 $\frac{\partial Q}{\partial x} = -1$
 $\frac{\partial Q}{\partial x} = -1$

$$F(x,y) = \int (2xe^{x} - y + 6x^{2}) dx = 2 \int xe^{x} dx - \int y dx$$

+ $6 \int x^{2} dx = 2 (xe^{x} - e^{x}) - y^{x} + 2x^{3} + C(y)$, since

$$\int xe^{x} dx = |v = x dy = dx| = xe^{x} - \int e^{x} dx = xe^{x} e^{x}$$

$$-x = \frac{\Im F}{\Im J} = -x + C'(y) = \int C'(y) = 0 = \int C(y) = 0.$$

=) $F(x,y) = [z(xe^{x} - e^{x}] - yx + 2x^{3} = C]$
=) $z(ye^{y} - e^{y}] - \sqrt{(x + 2)} = C = 2$

2 (xex-ex) - yx + 2x³ = 2 // $x \frac{dy}{dx} = 2xe^{-y} + 6x^{2} = 5$ Note: $xy'+y = 2xe' + 6x^2 - linear equation$ - can solve by usingintegrating factor.