Suppose that the function $y^{2}+x^{3}-x=1$ is specifreal implicitly. What kind of ODE will a function like this satisfy?

Take an implicit derivative:

$$
\left.\frac{d}{d x}\left(y^{2}+x^{3}-x\right)=\frac{d}{d x}\right)=0
$$

(*) $2 y \frac{d y}{d x}+3 x^{2}-1=0$ - this gives us an equation for the unslicit derivative, but (*) can also be thought of as an ODE

$$
2 y y^{\prime}+3 x^{2}-1=0
$$

that ant implicit function is a solution of. This ODE is also a separable equation:

$$
2 y d y=-\left(3 x^{2}-1\right) d x
$$

- can solve this by integrating both sides.

Also note that, if we replace 1 by C in the definition of the implicit function, we still get (*) after taking an implicit' derivative $\Rightarrow y^{2}+x^{3}-x=c$ is a one-para-
meter family of solutions (or the general solution) of (*).

Let's now see what ODE the general implicit expression

$$
F(x, y)=C \text { would satisfy. }
$$

Since y is a function of x, we can wite

$$
F(x, y(x))=C \text { for all } x
$$

Now take the derivative of both sides witt. x (using the multidimensional chain mlle):

$$
\begin{array}{r}
\frac{\partial F}{\partial y} \frac{d y}{d x}+\frac{\partial F}{\partial x}=0-\text { this is called } \\
\text { the firs order }
\end{array}
$$

Can also write it in this exact ODE
fern:

$$
\frac{\partial F}{\partial y} d y+\frac{\partial F}{\partial x} d x=0
$$

To summarize: $I(x, y)=C$ is the general solution of the exact equation $\frac{\partial F}{\partial y} d y+\frac{\partial F}{\partial x} d x=0$
Now, suppose we have an equation:

$$
P(x, y) d x+Q(x, y) d y=0
$$

It will be exact if there exists a function $F(x, y)$ s.t. $P(x, y)=\partial F / \partial x$ and $Q(x, y)=\partial F / \partial y$
How would we know that such function exists?
If it does \Rightarrow

$$
\begin{aligned}
\frac{\partial P}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{\partial F}{\partial x}\right) \\
\frac{\partial Q}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial y}\right)
\end{aligned}=\frac{\partial^{2} F}{\partial y^{2} x},
$$

It turns ont that the reverse is also tue:
If $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ and these partials are continuous, then $P=\frac{\partial F}{\partial x}$ and $Q=\frac{\partial F}{\partial y}$
\Rightarrow The $O D E \quad P d x+Q d y=0$ is exact if

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

ε_{x}. Is the equation $x^{2} d x+\cos y d y=0$ exact? If yes, find the general solution.

We have that $P(x, y)=x^{2}$ and $Q(x, y)=\cos y \Rightarrow$

$$
\frac{\partial P}{\partial y}=0, \frac{\partial Q}{\partial x}=0 \text { so that } \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} \text { - the } O D E \text { is exact. }
$$

Because the ODE is exact, there exists a function $E(x, y)$ such that

$$
\frac{\partial F}{\partial x}=P(x, y)=x^{2}, \frac{\partial F}{\partial y}=Q(x, y)=\cos y
$$

To find F, integrate the first equation in x while holding y fixed:

$$
F(x, y)=\int \frac{\partial F}{\partial x} d x=\int P d x=\int x^{2} d x=\frac{x^{3}}{3}+c(y)
$$

- note that C may depend on y because y is being held constant. To find $c(y)$ we take the derivative of Fw.r.t. y :

$$
\begin{aligned}
\frac{\partial F}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x^{3}}{3}+c(y)\right)=c^{\prime}(y)=Q=\cos y \\
\Rightarrow c^{\prime}(y) & =\cos y \Rightarrow c(y)=\int \cos y d y=\sin y \\
& \Rightarrow F(x, y)=\frac{x^{3}}{3}+\sin y
\end{aligned}
$$

Recall that $I(x, y)=C$ is the general solution of the exact equation $\frac{\partial F}{\partial y} d y+\frac{\partial F}{\partial x} d x=0 \Rightarrow$ our general solution is

$$
\frac{x^{3}}{3}+\sin y=c
$$

Suppose how that we have a separable equation

$$
y^{\prime}=f(x) g(y) \Rightarrow
$$

$$
\begin{aligned}
& \frac{d y}{d x}=f(x) g(y) \Rightarrow \frac{d y}{g(y)}=f(x) d x \Rightarrow \underset{\sim}{f(x)} d x-\underbrace{\frac{1}{g(y)}} d y=0 \\
& \Rightarrow \frac{\partial P}{\partial y}=\frac{\partial}{\partial y}(f(x))=0 \quad \Rightarrow \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} \Rightarrow \begin{array}{l}
\text { any separable } \\
\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}\left(-\frac{1}{g(y)}\right)=0
\end{array} \quad \begin{array}{l}
\text { equation is also } \\
\text { exact! }
\end{array}
\end{aligned}
$$

- the opposite is not true as we show in the next example.
Ex. Is the equation $(x-3 y) d x-\left(e^{y}+3 x\right) d y=0$ exact? If yes, find the general solution.
First, note that this equation is not separable.
Here $p(x, y)=x-3 y$ and $Q(x, y)=-\left(e^{y}+3 x\right) \Rightarrow$

$$
\begin{aligned}
& \frac{\partial P}{\partial y}=-3 \\
& \frac{\partial Q}{\partial x}=-3
\end{aligned} \Rightarrow \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}-\begin{aligned}
& \text { equation } \\
& \text { is exact. }
\end{aligned}
$$

$$
\Rightarrow c^{\prime}(x)=x \Rightarrow c(x)=\frac{x^{2}}{2} \Rightarrow F(x, y)=-\left(e^{y}+3 x y\right)+\frac{x^{2}}{2}
$$

This the general solution of the ODE

$$
-\left(e^{y}+3 x y\right)+\frac{x^{2}}{2}=c
$$

- the solution is un the implicit form.

Ex. Solve the initial value problem

$$
\left\{\begin{array}{l}
(x-3 y) d x-\left(e^{y}+3 x\right) d y=0 \\
y(0)=1
\end{array}\right.
$$

From the previous example, the general solution is

$$
-\left(e^{y}+3 x y\right)+\frac{x^{2}}{2}=c \Rightarrow-\left(e^{1}+3 \cdot x^{0} \cdot 1\right)+\frac{0^{20}}{2}=c \Rightarrow c=-e
$$

\Rightarrow solution of the IVP is $-\left(e^{y}+3 x y\right)+\frac{x^{2}}{2}=-e$

Ex. Is the equation $\left(y \ln y-e^{-x y}\right) d x+\left(\frac{1}{y}+x \ln y\right) d y=0$ exact? If yes, find the general solution.

$$
\underbrace{\left(y \ln y-e^{-x y}\right)}_{P} d x+\underbrace{\left(\frac{1}{y}+x \ln y\right)}_{Q} d y=0
$$

Check: $\frac{\partial P}{\partial y} \stackrel{\partial Q}{=} \frac{\partial Q}{\partial x}$

$$
\begin{aligned}
& \frac{\partial P}{\partial y}=\frac{\partial}{\partial y}\left(y \ln y-e^{-x y}\right)=\ln y+y \cdot \frac{1}{y}-e^{-x y}(-x) \\
&=\ln y+1+x e^{-x y} \\
& \frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}\left(\frac{1}{y}+x \ln y\right)=\ln y \quad \Rightarrow
\end{aligned}
$$

$\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$ - the equation is not
Ex. Is the equation $3 x y^{2} d y+\left(x^{3}+y^{3}\right) d x=0$ exact? If yes, find the general solution.

$$
\begin{aligned}
& \sim^{3 x y^{2} d y}+\underbrace{\left(x^{3}+y^{3}\right)}_{P} d x=0 \quad \Rightarrow \quad \frac{\partial P}{\partial y}=\frac{\partial}{\partial y}\left(x^{3}+y^{3}\right)=3 y^{2} \\
& \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} \Leftarrow \frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}\left(3 x y^{2}\right)=3 y^{2} \\
& \text { - equation is exact } \Rightarrow P=\partial F / \partial x \\
& Q=\partial F / \partial y \\
& \frac{\partial F}{\partial x}=x^{3}+y^{3}, \frac{\partial F}{\partial y}=3 x y^{2} \\
& \Rightarrow F(x, y)=\int\left(x^{3}+y^{3}\right) d x=\frac{x^{4}}{4}+y^{3} x+c(y) \\
& 3 x y^{2}=\frac{\partial F}{\partial y}=3 y^{2} x+c^{\prime}(y) \Rightarrow c^{\prime}(y)=0 \Rightarrow c=0 \\
& F(x, y)=\frac{x^{4}}{4}+y^{3} x=c
\end{aligned}
$$

Ex. Is the equation $\left(1+\ln x+\frac{y}{x}\right) d x=(1-\ln x) d y$ exact? If yes, find the general solution.

$$
\begin{aligned}
& \left(1+\ln x+\frac{y}{x}\right) d x=(1-\ln x) d y \\
& \begin{aligned}
\underbrace{\left(1+\ln x+\frac{y}{x}\right)}_{P} d x-\underbrace{(1-\ln x)}_{Q} d y=0 \Rightarrow \frac{\partial P}{\partial y}=\frac{1}{x} \\
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} \Leftarrow \frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}(\ln x-1)
\end{aligned} \\
& \begin{array}{l}
\text { - equation is }=\frac{1}{x} \\
\text { exact }
\end{array} \\
& \Rightarrow \frac{\partial F}{\partial x}=1+\ln x+\frac{y}{x} \\
& \frac{\partial F}{\partial y}=\ln x-1 \Rightarrow F(x, y)=\int(\ln x-1) d y \\
& =(\ln x-1) y+c(x) \\
& 1+\ln x+\frac{y}{x}=\frac{\partial F}{\partial x}=\frac{\partial}{\partial x}((\ln x-1) y+c(x))=\frac{y}{x}+c^{\prime}(x) \\
& \Rightarrow c^{\prime}(x)=\ln x+1 \Rightarrow c(x)=\int(\ln x+1) d x \\
& =\int \ln x d x+\int 1 d x=\int \ln x d x+x \quad\binom{y=\ln x \quad d u=\frac{d x}{x}}{d v=d x \quad v=x} \\
& =x \ln x+x-\int x \frac{d x}{x}=x \ln x+x-x=x \ln x \\
& \Rightarrow F(x, y)=(\ln x-1) y+x \ln x=c
\end{aligned}
$$

Ex. Solve the initial value problem

$$
\begin{aligned}
& \left\{\begin{array}{l}
x \frac{d y}{d x}=2 x e^{x}-y+6 x^{2} \\
y(1)=0
\end{array}\right. \\
& x \frac{d y}{d x}=2 x e^{x}-y+6 x^{2} \Rightarrow x d y=\left(2 x e^{x}-y+6 x^{2}\right) d x \\
& \begin{array}{l}
\Rightarrow \underbrace{\left(2 x e^{x}-y+6 x^{2}\right)}_{P} d x-\underbrace{-x d y=0}_{Q} \\
\frac{\partial F}{\partial x}=2 x e^{x}-y+6 x^{2}, \frac{\partial F}{\partial y}=-x \quad \frac{\partial P}{\partial y}=-1
\end{array} \\
& F(x, y)=\int\left(2 x e^{x}-y+6 x^{2}\right) d x=2 \int x e^{x} d x-\int y d x \\
& +6 \int x^{2} d x=2\left(x e^{x}-e^{x}\right)-y x+2 x^{3}+C(y) \text {, since } \\
& \int x e^{x} d x=\left|\begin{array}{ll}
u=x & d v=d x \\
d v=e^{x} d x & v=e^{x}
\end{array}\right|=x e^{x}-\int e^{x} d x=x e^{x}-e^{x} \\
& -x=\frac{\partial F}{\partial y}=-x+c^{\prime}(y) \Rightarrow c^{\prime}(y)=0 \Rightarrow c(y)=0 . \\
& \Rightarrow F(x, y)=2\left(x e^{x}-e^{x}\right)-y x+2 x^{3}=C \\
& \Rightarrow 2\left(1 \cdot e^{x^{0}}-e^{1}\right)-0 \cdot \dot{c}^{0}+2 \cdot 1^{3}=c \Rightarrow c=2
\end{aligned}
$$

$$
2\left(x e^{x}-e^{x}\right)-y x+2 x^{3}=2
$$

Note: $\quad x \frac{d y}{d x}=2 x e^{x}-y+6 x^{2} \Rightarrow$

$$
\begin{aligned}
x y^{\prime}+y=2 x e^{x}+6 x^{2}- & \text { linear equation } \\
& - \text { can solve by using } \\
& \text { integrating factor. }
\end{aligned}
$$

