
(*) Assume that there are No bacteria in the dish at time 0 .
(*) Find the minder of bacteria in the dish at time t.

Denote the \# of bacteria in the dishat true by $N(t)$ - an unknown function, however, $N(0)=N_{0}$. In principle, N(til should be irteger-valued, however, we can assume that $N(t)$ is real-valnet if $N(t)$ is large. Know that evaluation of the bacterial population will satisfy the following:
(1) $N(t)$ is λ
(2) Each bacteria is multiplying \Rightarrow expect that the rate of growth of NC should be proportional to $N(t)$. If we suppose that the coefficient of proportionality is $k \geqslant 0$

$$
\Rightarrow N^{\prime}(t)=\operatorname{le} N(t)
$$

\Rightarrow Need to solve: $\left\{\begin{array}{l}N^{\prime}=k N * \text { linear, }{ }^{\text {st }} \\ N(0)=N_{0}\end{array}\right.$

$$
\begin{aligned}
& \Rightarrow N^{\prime}-k N=0 \Rightarrow \mu(t)=e^{\int(-k) d t}=e^{-k t} \\
& \Rightarrow\left(e^{-k t} N\right)^{\prime}=0 \Rightarrow e^{-k t} N=c \Rightarrow N(t)=c e^{k t} \\
& \Rightarrow N_{0}=N(0)=c e^{0}=c \Rightarrow N(t)=N_{0} e^{k t}
\end{aligned}
$$

- population of bacteria evolves exponentially in time.

Ex. Suppose that there are initially 1000 bacteria in the dish. How many bacteria are there at $t=10$ lays?

$$
\Rightarrow N(t)=1000 e^{k t} \text { - how to find } k \text { ? }
$$

Suppose that we also know that there are 2000 bacteria in the dish after 1 hr . Can we use this info to find k ? $\Rightarrow 14 i=\frac{1}{24} d a y \Rightarrow$

$$
\begin{gathered}
2000=N\left(\frac{1}{24}\right)=1000 e^{k \cdot \frac{1}{24}} \\
\Rightarrow e^{k / 24}=2 \Rightarrow\left(e^{k}\right)^{1 / 24}=2 \Rightarrow \\
e^{k}=2^{24} \text {. We have N(t)=1000e kt } \\
=1000\left(e^{k}\right)^{t}=1000\left(2^{24}\right)=1000 \cdot 2^{24 t}
\end{gathered}
$$

$$
\Rightarrow N(t)=1000 \cdot 2^{24 t} \Rightarrow N(10)=1000 \cdot 2^{240}
$$

- very large $\#$!

Ex: Suppore that T_{2} is the time it takes the \# of bacteria to double. Want to find connection between T_{2} and k. Since

$$
\begin{aligned}
& N(t)=N_{0} e^{k t} \Rightarrow 2 N_{0}=N\left(T_{2}\right)=N_{0} e^{k T_{2}} \\
& \Rightarrow e^{k T_{2}}=2 \Rightarrow\left(e^{k}\right)^{T_{2}}=2 \Rightarrow e^{k}=2^{1 / T_{2} \Rightarrow} \\
& \Rightarrow N(t)=N_{0}\left(e^{k}\right)^{t}=N_{0}\left(2^{1 / T_{2}}\right)^{t}=N_{0} 2^{t / T_{2}}
\end{aligned}
$$

clearly, the linear model for bacterial growth can only be accurate when $N(t)$ is relatively small. Suppose that the dish cannot support more than N_{m} - maximum \# of bacteria \Rightarrow one way to account for this is to assume that le lepends on N:
properties of $k:$ (1) k is positive whin

$$
N<N_{m} \text { - the bacteria }
$$

still has rooM to multiply
(2) When $N=N_{m}$ the multiplication stops \Rightarrow

$$
k\left(\omega_{m}\right)=0
$$

(3) If $N>N_{m} \Rightarrow k(N)<0$ - bacteria primarily

What is the easiest expression for $k(N)$?

$$
k=k_{0}\left(N_{m}-N\right) \text {, where } k_{0}>0
$$

- satisfies (1)-(3)
\Rightarrow Modified model for bacterial growth:

$$
\begin{cases}N^{\prime}=\underbrace{k_{0}\left(N_{m}-N\right)}_{k(N)} N & \text { - nonlinear, separable, } \\ \text { antonomons , st order }\end{cases}
$$

Consider $N^{\prime}=k_{0}\left(N_{m}-N\right) N$; setting
$k_{0}\left(N_{m}-1\right) N=0 \Rightarrow$ equilibrium solutions are $N=0$ and $N=N \mathrm{~m}$

deaths dominate

Radioactive decay:
suppose that we have the mass m_{0} of radioactive material with half-life $T_{1 / 2}$. What is the remaining mats after tire t ?
Let $m(t)$ denote the mass remaining of tire t
$\Rightarrow m(0)=m_{0}$. The rate of decay $=m^{\prime}(t)$ and
(1) $m^{\prime}(t)<0$
(2) $m^{\prime}(t)=-k m(t), \quad k>0$
$\Rightarrow m^{\prime}=-k m$ is the liner ODE
governing radioactive decay
To determine $m(t)$, solve the IVP:

$$
\begin{aligned}
&\left\{\begin{array}{l}
m^{\prime}=-k m \Rightarrow m^{\prime}+k m=0 \\
m(0)
\end{array}=m_{0}\right. \\
& \Rightarrow \mu(t)=e^{\int k d t}=e^{k t} \Rightarrow\left(e^{k t} m\right)^{\prime}=0 \Rightarrow m^{k t} \\
& \Rightarrow e^{k t} m=c \Rightarrow m(t)=c e^{-k t} \\
& \Rightarrow m_{0}=m(0)=c e^{0} \Rightarrow c=m_{0} \\
& \Rightarrow m(t)=m_{0} e^{-k t}
\end{aligned}
$$

To relate k to $T_{1 / 2}: \frac{1}{2} m_{0}=m\left(T_{1 / 2}\right)=m_{0} e^{-k T_{1 / 2}}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} m_{0}=m_{0} e^{-k T_{1 / 2} \Rightarrow e^{-k T_{1 / 2}}=\frac{1}{2}} \\
& \Rightarrow\left(e^{-k}\right)^{T_{1 / 2}}=\frac{1}{2} \Rightarrow e^{-k}=\left(\frac{1}{2}\right)^{1 / T_{1 / 2}} \\
& \Rightarrow m(t)=m_{0} e^{-k t}=m_{0}\left(e^{-k}\right)^{t}=m_{0}\left[\left(\frac{1}{2}\right)^{1 / T_{1 / 2}}\right]^{t} \\
&=m_{0}\left(\frac{1}{2}\right)^{t / T_{1 / 2}} \\
& \Rightarrow m(t)=m_{0} \frac{1}{2 t / T_{1 / 2}}
\end{aligned}
$$

Ex: Suppose we initially have lug of radioactive material with halt. life 10 days. How much of the material is left after 12 hours?

$$
\begin{array}{r}
\Rightarrow 12 h 25=\frac{1}{2} \text { day } \Rightarrow \operatorname{m}\left(\frac{1}{2}\right)=? \\
\operatorname{mn}\left(\frac{1}{2}\right)=\frac{1}{2^{1 / 2 / 10}}=\frac{1}{2^{1 / 20}} .
\end{array}
$$

Ex: Suppose we initially have lug of radioactive material and 300 g are left after 1 hr. How much is left after 12 his?

$$
\begin{aligned}
m(t) & =m_{0} e^{-k t}=e^{-k t} ; \text { also, } \\
0.3=m(1) & =e^{-k \cdot 1}=e^{-k} \Rightarrow m(t)=e^{-k t}=\left(e^{-k}\right)^{t}
\end{aligned}
$$

$$
=(0.3)^{t} \Rightarrow m(12)=(0,3)^{12} \mathrm{~kg}
$$

Newton's Law of Cooling:
Initial temperature:

$$
T(0)=T_{0}
$$

The rate of change of temperature is $T^{\prime}\left(t j_{j}\right.$
Facts:
(1) If $T(t)<T_{e}$, then $T^{\prime}(t)>0$
(2) If $T(t)>T_{e}$, then $T^{\prime}(t)<0$
(3) If $T(t)=T_{e}$, then $T^{\prime}(t)=0$

Note: We will make an assumption that the temperature is the same throughout the body.

The simplest expression for T^{\prime} :

$$
T^{\prime}=-k\left(T-T_{e}\right), \quad k>0
$$

Need te solve the IVP:

$$
\begin{cases}T^{\prime}=-k(T-T e) & \text { linear O8E of } \\ T(0)=T_{0} & \text { the st ode }\end{cases}
$$

Solve the ODE: use the substitution

$$
u=T-T_{e} \Rightarrow u^{\prime}=T^{\prime} \Rightarrow \quad u^{\prime}=-k u-\text { same }
$$

equation as the one for radioactive decay \Rightarrow

$$
\begin{aligned}
u & \left.=u_{0} e^{-k t} \Rightarrow\right)_{u} T-T_{e} T-T_{e}=\left(T_{0}-T_{e}\right) e^{-k t} \\
\Rightarrow T & =T_{e}+\left(T_{0}-T_{e}\right) e^{-k t} / /
\end{aligned}
$$

Ex: Supsore that the temperature of the cup of tea when freshly poured is $90^{\circ} \mathrm{C}$. Suppose that the urns is taken outside where the temperature is $0^{\circ} \mathrm{C}$. If after 10 min . The temperature of the cups is $80^{\circ} \mathrm{C}$, what is the temperature after 20 minutes?

$$
\left.\begin{array}{rl}
T_{0} & =90^{\circ} c ; T_{e}=0^{\circ} c j T(10)=80^{\circ} \\
& \Rightarrow T=0+(90-0) e^{-k t}=90 e^{-k t} \\
& \Rightarrow 80=T(10)=90 e^{-k \cdot 10}=90\left(e^{-k}\right)^{10} \\
& \Rightarrow\left(e^{-k}\right)^{10}=\frac{8}{9} \Rightarrow e^{-k}=\left(\frac{8}{9}\right)^{1 / 10} \\
& \Rightarrow T(t)
\end{array}=90 e^{-k t}=90\left(e^{-k}\right)^{t}=90\left(\left(\frac{8}{9}\right)^{1 / 10}\right)^{t}\right)
$$

$$
\begin{aligned}
\Rightarrow T(20) & =90\left(\frac{8}{9}\right)^{20 / 10}=90\left(\frac{8}{9}\right)^{2} \\
& =10 \cdot \frac{8^{2}}{9}=\frac{640}{9} .
\end{aligned}
$$

3L/min
\lg / L
1000 L

Suppose that a pool initially contains 1000 L of pure water. Brine solution with salt concentration of $1 \mathrm{~g} / \mathrm{L}$ enters the poof at the rate of $3 \mathrm{~L} / \mathrm{min}$ and the well-mixed solution leaves the pool at the same rate. How much salt is in the tank at Hie t ?
Suppose that the concentration of salt in the pool at time t is $c(t) \Rightarrow m(t)=1000 c(t)$ - total mass of salt inside the tank.

$$
\begin{aligned}
m^{\prime}(t)= & \text { inflow-antflow }=3 L / \mathrm{min}^{\prime} \cdot \mathrm{g} / \mathrm{L} \\
& -3 L / \mathrm{min} c(t) \mathrm{g} / \mathrm{L} \\
\Rightarrow m^{\prime}= & 3-3 c(t)=3-3 \cdot \frac{m(t)}{1000}
\end{aligned}
$$

IVP for salt:

$$
\begin{aligned}
& \text { alt: }\left\{\begin{array}{l}
m^{\prime}=3-\frac{3}{1000} m \\
m(0)=0
\end{array}\right. \\
& 000 m=3 \Rightarrow \mu(t)=e^{\int} \\
& m)^{\prime}=3 e^{\frac{3 t}{1000} \Rightarrow e^{3 t / 1000}} m \\
& \frac{000}{3} e^{3 t / 1000}+c \Rightarrow \\
& m(t)=1000+c e^{-3 t / 1000}
\end{aligned}
$$

$$
m^{\prime}+\frac{3}{1000} m=3 \Rightarrow \mu(t)=e^{\int \frac{3}{1000} d t}=e^{\frac{3 t}{1000}}
$$

$$
\left(e^{3 t / 1000} m\right)^{\prime}=3 e^{\frac{3 t}{1000}} \Rightarrow e^{3 t / 1000} m=3 \int e^{\frac{3 t}{1000} d t}
$$

$$
\left.=\beta \cdot \frac{1000}{z} e^{3 t / 1000}+c=\right)
$$

$$
0=m(0)=1000+c e^{0} \Rightarrow C=-1000
$$

$$
\Rightarrow m(t)=1000-1000 e^{-3 t / 1000}
$$

