

The system is in equilibrium when the length of the spring is l_{0}; How would the block move after it is shifted from the equilibrium position?
second Newton's daw:

$$
m a=F
$$

$$
\begin{aligned}
& F=F_{S}+F_{D} \\
& \Gamma \\
& r_{\text {r }} \text { resistance/ } \\
& \text { force due damping } \\
& \text { to stretching/ force }
\end{aligned}
$$ to stretching/ force compression

Elongation of the spring $=0 \Rightarrow$ no force on the block Elongation of the spring $=x \Rightarrow$ if $x>0$, there is a force in the neg-
From experimental evidence, the magi- \angle Hive direction of tude of the force is x-axis and vice proportional to relative versa. elongation:
$F_{s}=-\frac{\alpha x}{l_{0}}=-k x$, where $k>0$ is a spring constant

Now, the resistance force between the block and the ground is proportional to the velocity of the blok k and it acts in the direction opposite to the block motion since it attempts to slow it down:

$$
F_{d}=-\beta V \text {, where } \beta \geqslant 0
$$

\Rightarrow The $2^{\text {nd }}$ Newton's daw is:

$$
m a=F_{s}+F_{d}=-k x-\beta V
$$

Now, the position of the block relative to the equilibrium length of the spring is x and x can vary with time $t \Rightarrow$

$$
\begin{aligned}
& \text { position }=x(t) \quad \quad \text { Notation: } \\
\Rightarrow & \text { velocity } v=\dot{x}(t) \quad \dot{x}(t)=\frac{d x}{d t} \\
\Rightarrow & \text { acceleration } a=\dot{v}(t)=\ddot{x}(t)
\end{aligned}
$$ and the $z^{\text {nd }}$ Newton's Saw becomes

$$
m \ddot{x}=-k x-\beta \dot{x} \quad \text { or }
$$

$$
m \ddot{x}+\beta \dot{x}+k x=0
$$

To fully determine the position of the block at any time, we also need to \Rightarrow position of the block at any time can be determined by solving the IVP:

$$
\left\{\begin{array}{l}
m \ddot{x}+\beta \dot{x}+k x=0 \\
x(0)=x_{0} \\
\dot{x}(0)=v_{0}
\end{array}\right.
$$

I. Assume that these is no friction, i.e., $\beta=0 \Rightarrow$ IVP becomes:

$$
\left\{\begin{array}{l}
m \ddot{x}+k x=0 \\
x(0)=x_{0} \\
\dot{x}(0)=v_{0}
\end{array}\right.
$$

To solve: characteristic equation

$$
m r^{2}+k=0 \Rightarrow r^{2}=-\frac{k}{m}<0
$$

Notation:
Set $\omega^{2}=\frac{k}{m}$

$$
\begin{gathered}
\Rightarrow \Gamma^{2}=-\omega^{2} \Rightarrow \Gamma= \pm \omega \\
\Rightarrow x(t)=c_{1} \cos \omega t+c_{2} \sin \omega t
\end{gathered}
$$

Therefore, as expected, without friction the position of the block will oscillate relative to the equilibrium, never stopping. We can use the initial data to defermal c_{1} and $c_{2}: \quad \dot{x}(t)=-\omega c_{1} \sin \omega t+\omega c_{2} \cos \omega t$

$$
\begin{aligned}
& \Rightarrow \quad x_{0}=x(0)=c_{1} ; \quad v_{0}=\dot{x}(0)=\omega c_{2} \Rightarrow c_{2}=\frac{v_{0}}{\omega} \\
& \Rightarrow \quad x(t)=x_{0} \cos \omega t+\frac{V_{0}}{\omega} \sin \omega t
\end{aligned}
$$

Notice that we can also rewrite $x(t)$ as follows:

$$
\begin{aligned}
& x(t)=x_{0} \cos \omega t+\frac{v_{0}}{\omega} \sin \omega t \\
& =\sqrt{x_{0}^{2}+\frac{v_{0}^{2}}{\omega^{2}}}\left[\frac{x_{0}}{\sqrt{x_{0}^{2}+\frac{v_{0}^{2}}{\omega^{2}}}} \cos \omega t+\frac{v_{0} / \omega}{\sqrt{x_{0}^{2}+\frac{v_{0}^{2}}{\omega^{2}}}} \sin \omega t\right]
\end{aligned}
$$

Now, because

$$
\left(\frac{x_{0}}{\sqrt{x_{0}^{2}+\frac{v_{0}^{2}}{w^{2}}}}\right)^{2}+\left(\frac{v_{0} / w}{\sqrt{x_{0}^{2}+\frac{v_{0}^{2}}{\omega^{2}}}}\right)^{2}=1 \quad(\text { check })
$$

we can find φ such that

$$
\cos \varphi=\frac{v_{0} / \omega}{\sqrt{x_{0}^{2}+\frac{v_{0}^{2}}{\omega^{2}}}}, \sin \varphi=\frac{x_{0}}{\sqrt{x_{0}^{2}+\frac{v_{0}^{2}}{\omega^{2}}}} \Rightarrow \tan \varphi=\frac{\sin \varphi}{\cos \varphi}
$$

Also, denote

$$
=\frac{x_{0} w}{V_{0}}
$$

$$
A=\sqrt{x_{0}^{2}+\frac{v_{0}^{2}}{w^{2}}}, \text { then } \varphi=\tan ^{-1} \frac{x_{0} \omega}{v_{0}}
$$

$$
x(t)=A(\sin \varphi \cos \omega t+\cos \varphi \sin \omega t)
$$

$$
\Rightarrow x(t)=A \sin (\omega t+\varphi) \text {, because }
$$

$\sin a \cos b+\cos a \sin b=\sin (a+b)$ - trig. identity

Therefore, $x(t)$ oscillates between $\pm A$ - we call A the amplitude of oscillations; U is called the phase; Because the sine function has a period 2T,
the motion of the block is periodic w/peiod

$$
\begin{gathered}
T=\frac{2 \pi}{\omega}: \quad \text { hoed } \omega(t+T)+\varphi=\omega\left(t+\frac{2 \pi}{\omega}\right)+\varphi \\
=(\omega t+\varphi)+2 \pi \Rightarrow
\end{gathered}
$$

\Rightarrow the block repeats its motion after time.
The unnber of times the block will repeat its motion in one unit of time is then given by $f=\frac{1}{T}$-this is called the frequency of oscillations.

Ex.1: Suppose that a block of mass $2 n g$ is attached to a wall with a spring and that the block can be moved on the floor in the direction sersendienlai to the wall. A test of the spring reveals that stretching the spring by 10 cm requires the force of 0.8 N .
If the block is moved away from the wall by 20 cm and then released from rest, determine the position of the block at any time. What is the amplitude, the phase, the seriod and the frequency of motion of the black if there is no resistance between the block and the floor?
(1) The force required to stretch the spring by $10 \mathrm{~cm}=0.1 \mathrm{~m}$ is $0.8 \mathrm{~N} \Rightarrow$ the spring force compensating the applied force is $k \cdot 0.1 \Rightarrow$

$$
k \cdot 0.1 \mathrm{~m}=0.8 \mathrm{~N} \Rightarrow k=8 \frac{\mathrm{~N}}{\mathrm{~m}}
$$

(2)

$$
m a=F_{s}+F_{d}
$$

$$
シ
$$

$$
m a=-l e x-\beta v
$$

V/

$$
\left\{\begin{array}{l}
\ddot{x}+4 x=0 \Leftarrow 2 \ddot{x}+8 x=0 \Leftarrow m \ddot{x}=-k x-\beta \dot{x} \\
x(0)=0.2 \leftarrow 20 q M=0.2 \mathrm{~m} \\
\dot{x}(0)=0 \leftarrow \text { block is released } \\
\text { from rest. }
\end{array}\right.
$$

Solve the ODE: $r^{2}+4=0 \Rightarrow r= \pm 2 i$

$$
\left.\begin{array}{l}
\Rightarrow x(t)=c_{1} \cos 2 t+c_{2} \sin 2 t \\
\Rightarrow \dot{x}(t)=-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t \\
0.2=x(0)=c_{1} \cdot 1+c_{2} \cdot 0 \\
0=\dot{x}(0)=-2 c_{1} \cdot 0+2 c_{2} \cdot 1
\end{array}\right\} \Rightarrow c_{1}=0.2, c_{2}=0
$$

Therefore: $x(t)=0.2 \cos 2 t=0.2 \sin \left(2 t+\frac{\pi}{2}\right)$ because of the trig identity: $\sin \left(a+\frac{\pi}{2}\right)=\cos a$

Then $x(t)=\frac{0.2 \sin \left(2 t+\frac{\pi}{2}\right)}{\pi}$
amplitude A

$$
\begin{aligned}
\Rightarrow T & =\frac{2 \pi}{w}=\frac{2 \pi}{2}=\pi-\text { period } \\
f & =\frac{1}{T}=\frac{1}{\pi}-\text { frequency }
\end{aligned}
$$

Ex. 2 suppose that once the mass of 160 g is attached to the end of the spring hanging from the ceiling, the sp zing is elongated by $19,6 \mathrm{~cm}$. suppose that there is no ail esistace or other sources of friction. If the mass is then pulled down by 4 cm and then released with the upward velocity of $1 \mathrm{~m} / \mathrm{s}$, find the position of the block at any time t.
(1)

$$
\Rightarrow k \cdot 0.196=0.16 \cdot 9.8 \Rightarrow k=8 \frac{\mathrm{~N}}{\mathrm{~m}}
$$

(2) Now that the spring force compensates gravity in equilibrium we can neglect gravity in the rest of this problem and consider the location of the block whir it stops moving as the equilibrium of the spring/mass system:

$$
\begin{aligned}
& r^{2}+50=0 \Rightarrow \Gamma= \pm \sqrt{50} i \\
& y(t)=c_{1} \cos \sqrt{50} t+c_{2} \sin \sqrt{50} t \\
& \dot{y}(t)=-\sqrt{50} c_{1} \sin \sqrt{50} t+\sqrt{50} c_{2} \cos \sqrt{50} t \\
& -0.04=y(0)=c_{1} \\
& 1=\dot{y}(0)=\sqrt{50} c_{2} \Rightarrow c_{2}=\frac{1}{\sqrt{50}} \\
& \Rightarrow y(t)=-0.04 \cos \sqrt{50} t+\frac{1}{\sqrt{50}} \sin \sqrt{50} t \\
& \left.\Rightarrow A=\sqrt{0.04^{2}+\left(\frac{1}{550}\right.}\right)^{2}=\sqrt{\left(\frac{4}{100}\right)^{2}+\frac{1}{50}}=\sqrt{\frac{1}{25^{2}}+\frac{1}{50}} \\
& =\sqrt{1 / 25} \sqrt{\frac{1}{25}+\frac{1}{2}}=\frac{1}{5} \sqrt{\frac{27}{50}}=\frac{3}{5} \sqrt{\frac{3}{50}} \mathrm{~m}
\end{aligned}
$$

- the amplitude; period $T=\frac{2 \pi}{\sqrt{50}}$.

Motion in presence of friction:

$$
m \ddot{x}+\beta \dot{x}+k x=0
$$

\Rightarrow Characteristic equation:

$$
m r^{2}+\beta r+k=0
$$

Divide by m :

$$
r^{2}+\frac{\beta}{m} r+\frac{k}{m}=0
$$

Denote: $\gamma=\frac{\beta}{2 m}$ and recall that $\omega^{2}=\frac{k}{m} \Rightarrow$

$$
\begin{gathered}
r^{2}+2 \gamma r+\omega^{2}=0 \Rightarrow \\
r=\frac{-2 \gamma \pm \sqrt{4 \gamma^{2}-4 \omega^{2}}}{2}=-\gamma \pm \sqrt{\gamma^{2}-\omega^{2}}
\end{gathered}
$$

and we have to consider three cases:
(1) $\delta>\omega \Rightarrow$ characteristic equation has two real roots

$$
\Gamma_{1}=-\gamma-\sqrt{\gamma^{2}-\omega^{2}} \text { and } \Gamma_{2}=-\gamma+\sqrt{\gamma^{2}-\omega^{2}}
$$

clearly, $\Gamma_{1}<0$ and so is Γ_{2} since $\sqrt{\gamma^{2}-\omega^{2}}<\gamma$

The solution to the ODE is

$$
x(t)=c_{1} e^{-\left(\gamma+\sqrt{\gamma^{2}-\omega^{2}}\right) t}+c_{2} e^{\left(-\gamma+\sqrt{\gamma^{2}-\omega^{2}}\right) t}
$$

and $x(t) \rightarrow 0$ as $t \rightarrow \infty$ as expected - the motion will eventually cease due to friction.
(2) $\gamma=\omega \Rightarrow$ characteristic equation has one solution, $t=-\gamma$. Then

$$
x(t)=c_{1} e^{-\gamma t}+c_{2} t e^{-\gamma t}
$$

Here $x(t) \rightarrow 0$ with $t \rightarrow \infty$ as well.
(3)

$$
\begin{aligned}
& \gamma<\omega \Rightarrow \gamma^{2}-\omega^{2}<0 \Rightarrow \sqrt{\gamma^{2}-\omega^{2}}=\sqrt{-\left(\omega^{2}-\gamma^{2}\right)} \\
& = \pm i \sqrt{\omega^{2}-\gamma^{2}} \\
& \Rightarrow r=-\gamma \pm i \sqrt{\omega^{2}-\gamma^{2}} \\
& \Rightarrow x(t)=e^{-\gamma t}\left(c_{1} \sin \sqrt{\omega^{2}-\gamma^{2}} t+c_{2} \cos \sqrt{\omega^{2}-\gamma^{2}} t\right) \\
& \Rightarrow \lim _{t \rightarrow \infty} x(t)=0 \text { because the exponential }
\end{aligned}
$$ factor goes to 0 while sin and cos oscillate between - 1 and 1.

In the three cabs above, the resistance always eventually stops the motion. The strength of fricton is measured by 8 : It is the weakest in the case (3) and the solution in this case is still able to oscillate. This case corresponds to a spring-mass system that is underdamped.

In the cases (1) and (2) there is at most one pass through the equilibrium before the mass stops moving - these cases are known as overdamped and critically damped, respectively.

Ex. 3: suppose that a block of mass 2 ng is attached to a wall with a spring and that the block can be moved on the floor in the direction sersendienlar to the floor. A test of the spring reveals that stretching the spring by 10 cm requires the force of 0.8 N . Suppose, in addition, that the resistance to the moton is $F_{d}=-10 \mathrm{~V}$.
If the block is moved away from the wall by 30 cm and then released from rest, deterusthe the position of the block at any time. Classify the motion according to its damping strength.

The spring data is the same as in Ex. 1

$$
\begin{aligned}
& \Rightarrow k=8 \mathrm{~N} / \mathrm{m} \\
& \Rightarrow F=-8 x-10 \dot{x}
\end{aligned}
$$

$\Rightarrow m a=F$ becomes $2 \ddot{x}=-8 x-10 \dot{x}$ or

$$
\left\{\begin{array}{l}
8 \dot{x}+10 \dot{x}+8 x=0 \\
x(0)=0,3 \\
\dot{x}(0)=0
\end{array}\right.
$$

Divide the equation by $2: \quad \ddot{x}+5 \dot{x}+4 x=0$
\Rightarrow characteristic equation: $r^{2}+5 r+4=0$

$$
\Rightarrow(r+1)(r+4)=0 \Rightarrow r=-1,-4) \therefore \text { two }
$$

real roots means that the system is overdamped

$$
\begin{aligned}
x(t) & =c_{1} e^{-t}+c_{2} e^{-4 t} \Rightarrow \\
\dot{x}(t) & =-c_{1} e^{-t}-4 c_{2} e^{-4 t} \\
\Rightarrow \quad 0.2 & =x(0)=c_{1}+c_{2} \Rightarrow-4 c_{2}+c_{2}=0.3 \Rightarrow c_{2}=-0.1 \\
0 & =\dot{x}(0)=-c_{1}-4 c_{2} \Rightarrow c_{1}=-4 c_{2} \Rightarrow c_{1}=0.4 \\
\therefore x(t) & =0.4 e^{-t}-0.1 e^{-4 t}
\end{aligned}
$$

Driven motion: Suppose that we have the same spring-mass system as in the Ex. I but now assume that an external force $F(t)=8 \cos \alpha t$ is applied to the mass. If the mass is initially moved by 20 cm toward the wall and then released from rest, deferral the position of the mass of any $t>0$.
As in example 1, $k=8 \mathrm{~N} / \mathrm{M}, \beta=0 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{M}}$

$$
\begin{gathered}
F=-8 x+8 \cos \alpha t \\
W \\
\ln a=F
\end{gathered}
$$

$$
\left\{\begin{array}{l}
\ddot{x}+4 x=8 \cos \alpha t \leqslant 2 \ddot{x}=-8 x+8 \cos \alpha t \\
x(0)=-0.2 \\
\dot{x}(0)=0
\end{array}\right.
$$

Now, need to solve a nonhomogeneous ODE:

$$
r^{2}+4=0 \Rightarrow r= \pm 2 i \Rightarrow x_{h}(t)=c_{1} \cos 2 t+c_{2} \sin 2 t
$$

Use undetermined coefficients to find a particular solution:

$$
\begin{aligned}
& x_{p}=A \cos \alpha t+B \sin \alpha t \\
& \dot{x}_{p}=-\alpha A \sin \alpha t+\alpha B \cos \alpha t \\
& \ddot{x}_{p}=-\alpha^{2} A \cos \alpha t-\alpha^{2} B \sin \alpha t \\
& \Rightarrow \quad \ddot{x}_{p}+4 x_{p}=-\alpha^{2} A \cos \alpha t-\alpha^{2} B \sin \alpha t \\
&+4(A \cos \alpha t+B \sin \alpha t)=8 \cos \alpha t \\
& \Rightarrow A\left(4-\alpha^{2}\right) \cos \alpha t+B\left(4-\alpha^{2}\right) \sin \alpha t=8 \cos \alpha t \\
& \Rightarrow A\left(4-\alpha^{2}\right)=8, \quad B\left(4-\alpha^{2}\right)=0 \\
& \Rightarrow A=\frac{8}{4-\alpha^{2}}, \quad B=0 \\
& \Rightarrow x_{p}(t)=\frac{8}{4-\alpha^{2}} \cos \alpha t \\
& \Rightarrow x(t)=C_{1} \cos 2 t+C_{2} \sin 2 t+\frac{8}{4-\alpha^{2}} \cos \alpha t
\end{aligned}
$$

$$
\begin{aligned}
&-0.2=x(0)=c_{1}+\frac{8}{4-\alpha^{2}} \Rightarrow c_{1}=-\left(0.2+\frac{8}{4-\alpha^{2}}\right) \\
& 0=\dot{x}(0)=2 c_{2} \Rightarrow c_{2}=0 \\
& \Rightarrow x(t)=-\left(0.2+\frac{8}{4-\alpha^{2}}\right) \cos 2 t+\frac{8}{4-\alpha^{2}} \cos \alpha t
\end{aligned}
$$

Notice that for the applied fore of the fixed magnitude if we change the fervency α of force oscillations, then the amplitude of $x(t)$ grows large as $\alpha+2$. In fact, the solution above is not even valid when $\alpha=2$ 。
To fix this problem, look for a particular solution of

$$
\ddot{x}+4 x=8 \cos 2 t, \text { where } \alpha=2 \text {. }
$$

We already know that $x_{h}(t)=c_{1} \cos 2 t+c_{2} \sin c t$ then $x_{p}=A \cos 2 t+B \sin 2 t$ solves the homogenaxs equation and we need to set

$$
x_{p}=A t \cos 2 t+B t \sin 2 t=1
$$

$$
\begin{array}{r}
\dot{x}_{p}=A \cos 2 t+B \sin 2 t-2 A t \sin 2 t+2 B t \cos 2 t \\
\ddot{x}_{p}=-4 A \sin 2 t+4 B \cos 2 t-4 A t \cos 2 t-4 B t \sin 2 t \\
\Rightarrow \ddot{x}_{p}+4 x_{p}=-4 A \sin 2 t+4 B \cos 2 t-4 A t \cos 2 t-4 B t \sin 2 t \\
\\
+4(A t \cos 2 t+B t \sin 2 t)=8 \cos 2 t \\
(-4 A-4 B t+4 B t) \sin 2 t+(4 B-4 A t+4 A t) \cos 2 t=8 \cos 2 t \\
\Rightarrow 4 B=8,-4 A=0 \Rightarrow A=0, B=2 \\
\Rightarrow x_{p}(t)=2 t \sin 2 t \Rightarrow
\end{array} \quad \begin{array}{r}
x(t)=c_{1} \cos 2 t+c_{2} \sin 2 t+2 t \sin 2 t \\
\dot{x}(t)=-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t+2 \sin 2 t \\
+4 t \cos 2 t
\end{array}
$$

- this solution still oscillates, but its amplitude $\uparrow \infty$-resonance.

