In the next set of lectures we will discuss yet another way of solving linear equations with constant coefficients, but this will require addiroual background.
we introduce a function of functions defined via the following formula:

$$
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

for those functions of t for which this integral converges (i.e., it is finite). Note that you plug in a function $f(t)$ as an input and integrate int assuming that s is a constant. Then the value of the integral depends on s; we dente the resulting function $F(s)$. We this defined what is called the

Laplace Transform

$$
F(s)=\mathcal{L}\{f(t)\}
$$

- input function of + and get a functron of s as the output.
Note: Because we integrate from o to ∞, only the part of f defined over $t>0$ is important here.
Ex 1:
Suppose $f(t)=e^{t} \Rightarrow$

$$
\begin{aligned}
& \left.F(s)=\mathcal{L}\{f(t)\}=\mathcal{L}\} e^{t}\right\}=\int_{0}^{\infty} e^{-s t} e^{t} d t \\
& \text { sis constant } \int_{0}^{\infty} e^{(1-s) t} d t=\lim _{p \rightarrow \infty} \int_{0}^{p} e^{(1-s) t} d t \\
& =\lim _{p \rightarrow \infty}\left(\left.\frac{e^{(1-s) t}}{1-s}\right|_{0} ^{p}\right)=\lim _{p \rightarrow \infty}\left(\frac{e^{(1-s) p}}{1-s}-\frac{1}{1-s}\right) \\
& =\frac{1}{1-s}\left(\lim _{p \rightarrow \infty} e^{(1-s)}\right)
\end{aligned}
$$

$\lim _{p \rightarrow \infty} e^{(1-s) p}=\left\{\begin{array}{ll}0, & s>1 \\ \infty, s<1\end{array} \Rightarrow \begin{array}{l}\text { the integral } \\ \\ \text { converges only } \\ \text { if } s>1\end{array}\right.$ if $s>1$

$$
\Rightarrow \quad L\left\{e^{t}\right\}=0-\frac{1}{1-s}=\frac{1}{s-1} \quad \text { if } s>1
$$

Ex.2: Now, let's try the general case $f(t)=e^{a t}$, where a is a constant
then:

$$
\left.F(s)=\mathcal{L}\{f(t)\}=\mathcal{L}\} e^{a t}\right\}=\int_{0}^{\infty} e^{-s t} e^{a t} d t
$$

sis constant $\int_{0}^{\infty} e^{(a-s) t} d t=\lim _{p \rightarrow \infty} \int_{0}^{p} e^{(a-s) t} d t$

$$
\begin{aligned}
& =\lim _{p \rightarrow \infty}\left(\left.\frac{e^{(a-s) t}}{a-s}\right|_{0} ^{p}\right)=\lim _{p \rightarrow \infty}\left(\frac{e^{(a-s) p}}{a-s}-\frac{1}{a-s}\right) \\
& =\frac{1}{a-s}\left(\lim _{p \rightarrow \infty} e^{(a-s) p}\right)-\frac{1}{a-s}
\end{aligned}
$$

$\lim _{p \rightarrow \infty} e^{(a-s) p}=\left\{\begin{array}{ll}0, & s>a \\ \infty, s<a\end{array} \Rightarrow \begin{array}{l}\text { the integral } \\ \text { converges only } \\ \text { in si a }\end{array}\right.$ if $s>a$

$$
\begin{aligned}
\Rightarrow\left\{\left\{e^{a t}\right\}\right. & =0-\frac{1}{a-s}=\frac{1}{s-a} \text { if } s>a \\
\{x \cdot 3:\{\{ \} 1\} & =\int_{0}^{\infty} 1 \cdot e^{-s t} d t=\lim _{p \rightarrow \infty} \int_{0}^{p} e^{-s t} d t
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{p \rightarrow \infty}\left(-\left.\frac{1}{s} e^{-s t}\right|_{0} ^{p}\right)=\lim _{p+\infty}\left(\frac{1}{s}-\frac{1}{s} e^{-s p}\right) \\
& =\frac{1}{s}-\frac{1}{s} \lim _{p \rightarrow \infty} e^{-s p}=\frac{1}{s}-\frac{1}{s}\left\{\begin{array}{l}
0, \text { f } s>0 \\
\infty, \text { if } s<0
\end{array}\right. \\
& \Rightarrow \alpha\{1\}=\frac{1}{s} \quad \text { if } s>0
\end{aligned}
$$

Ex. 4: $\mathcal{L}\left\{t^{n}\right\}=\int_{0}^{\infty} t^{n} e^{-s t} d t$

$$
=\lim _{p \rightarrow \infty} \int_{0}^{p} t^{n} e^{-s t} d t
$$

Need to evaluate $\int_{0}^{t} t^{n} e^{-s t} d t t_{1.1}$ use parts:

$$
\begin{aligned}
& \int_{0}^{p} t^{n} e^{-s t} d t=\left|\begin{array}{ll}
u=t^{n} & d u=n t^{n-1} \\
d v=e^{-s t} d t & v=-\frac{1}{s} e^{-s t}
\end{array}\right| \\
& =-\left.\frac{t^{n}}{s} e^{-s t}\right|_{0} ^{p}+\frac{n}{s} \int_{0}^{p} t^{n-1} e^{-s t} d t \\
& =-\frac{p^{n}}{s} e^{-s p}+\frac{n}{s} \int_{0}^{p} t^{n-1} e^{-s t} d t
\end{aligned}
$$

Substituting this back into the limit:

$$
\begin{aligned}
& \left\{\left\{t^{n}\right\}=\lim _{p \rightarrow \infty}\left(-\frac{p^{n}}{s} e^{-s p}+\frac{n}{s} \int_{0}^{p} t^{n-1} e^{-s t} d t\right)\right. \\
& =-\frac{1}{s} \lim _{p \rightarrow \infty} p^{n} e^{-s p}+\frac{n}{s} \lim _{p \rightarrow \infty} \int_{0}^{p} t^{n-1} e^{-s t} d t
\end{aligned}
$$

Then: $\left.\left.\mathcal{L}\{t\}^{n=1}=\frac{1}{s} \mathcal{L}\left\{t^{0}\right\}=\frac{1}{s} \mathcal{L}\right\} 1\right\}=\frac{1}{s} \cdot \frac{1}{s}=\frac{1}{s^{2}}$

$$
\begin{aligned}
& \left\{\{ t ^ { 2 } \} \stackrel { n = 2 } { = } \frac { 2 } { s } \left\{\{t\}=\frac{2}{s} \cdot \frac{1}{s^{2}}=\frac{2 \cdot 1}{s^{3}}\right.\right. \\
& \mathcal{L}\left\{t^{3}\right\} \stackrel{n=3}{=} \frac{3}{s}\left\} t^{2}\right\}=\frac{3}{s} \cdot \frac{2 \cdot 1}{s^{3}}=\frac{1 \cdot 2 \cdot 3}{s^{4}}
\end{aligned}
$$

$$
\mathcal{L}\left\{t^{n}\right\}=\frac{1 \cdot 2 \cdot 3 \cdot \cdots \cdot(n-1) n}{s^{n+1}}=\frac{n!}{s^{n+1}} \quad \text { Lf } s>0
$$

Some additional properties:

$$
\begin{aligned}
& \text { (1) } \mathcal{L}\{c f(t)\}=\int_{0}^{\infty} c f\left(t \mid e^{-s t} d t=c \int_{0}^{\infty} f\left(t \mid e^{-s t} d t=c \mathcal{L}\{f(t)\}\right.\right. \\
& \text { (2) } \mathcal{L}\{f(t)+g(t)\}=\int_{0}^{\infty}(f(t)+g(t)) e^{-s t} d t \\
& =\int_{0}^{\infty}\left(f(t) e^{-s t}+g\left(t \mid e^{-s t}\right) d t=\int_{0}^{\infty} f\left(t \mid e^{-s t} d t\right.\right. \\
& \left.\left.+\int_{0}^{\infty} g(t) e^{-s t} d t=\alpha\right\} f(t)\right\}+\alpha\{g(t)\}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=-\frac{1}{s} \lim _{p \rightarrow \infty} p^{n} p^{n} e^{-s p}+\frac{h}{s}<\underbrace{}_{n} \underbrace{\int_{0}^{\infty} t^{n-1} e^{-s t} d t}_{\substack{s>0}} \underbrace{}_{\mathcal{\alpha}\left\{t^{n-1}\right\}},
\end{array} \\
& \lim _{p \rightarrow \infty} \frac{p^{n}}{e^{s p}} \stackrel{\text { S.H. }}{=} \lim _{p+\infty} \frac{n p^{n-1}}{s e^{s p}} \text { erest } n \text { ntimes } \lim _{p \rightarrow \infty} \frac{\text { const }}{e^{s p}}=0 \\
& \Rightarrow\left\{\left\{t^{h}\right\}=\frac{h}{s} \mathcal{L}\left\{t^{h-1}\right\} \quad \text { for any } h \text { and } s>0\right.
\end{aligned}
$$

We conclude that Laplace Transform is linear.
Ex: $\left.\left.\quad \alpha\left\{2 e^{-t} t t^{4}\right\}=2 \mathcal{L}\left\{e^{-t}\right\}+\mathcal{L}\right\} t^{4}\right\}$

$$
=2 \cdot \frac{1}{s-(-1)}+\frac{4!}{s^{5}}=\frac{2}{s+1}+\frac{4!}{s^{5}}
$$

Additional transforms:

$$
\begin{aligned}
& \mathcal{L}\{\cos a t\}=\mathcal{L}\left\{\frac{e^{i a t}+e^{-i a t}}{2}\right\} \\
& =\frac{1}{2} \mathcal{L}\left\{e^{i a t}\right\}+\frac{1}{2} \mathcal{L}\left\{e^{-i a t}\right\} \\
& =\frac{1}{2}\left(\frac{1}{s-i a}+\frac{1}{s+i a}\right)=\frac{1}{2} \frac{s+i a+s-i a}{(s-i a)(s+i a)} \\
& =\frac{1}{2} \frac{2 s}{s^{2}-(i a)^{2}}=\frac{s}{s^{2}-i^{2} a^{2}}=\frac{s}{s^{2}+a^{2}}
\end{aligned}
$$

Likewise:

$$
\begin{aligned}
& \mathcal{L}\{\sin a t\}=\mathcal{L}\left\{\frac{e^{i a t}-e^{-i a t}}{2 i}\right\} \\
& =\frac{1}{2 i} \mathcal{L}\left\{e^{i a t}\right\}-\frac{1}{2 i} \mathcal{L}\left\{e^{-i a t}\right\} \\
& =\frac{1}{2 i}\left(\frac{1}{s-i a}-\frac{1}{s+i a}\right)=\frac{1}{2 i} \frac{s+i a-s+i a}{(s-i a)(s+i a)} \\
& =\frac{1}{2 i} \frac{2 i a}{s^{2}-(i a)^{2}}=\frac{a}{s^{2}-i^{2} a^{2}}=\frac{a}{s^{2}+a^{2}}
\end{aligned}
$$

Next:

$$
\begin{aligned}
& \mathcal{L}\{\operatorname{coshat}\}=\mathcal{L}\left\{\frac{e^{a t}+e^{-a t}}{2}\right\} \\
& =\frac{1}{2} \mathcal{L}\left\{e^{a t}\right\}+\frac{1}{2} \mathcal{L}\left\{e^{a t}\right\} \\
& = \\
& =\frac{1}{2}\left(\frac{1}{s-a}+\frac{1}{s+a}\right)=\frac{1}{2} \frac{s+A+s-a}{(s-a)(s+a)} \\
& = \\
& =\frac{1}{2} \frac{2 s}{s^{2}-a^{2}}=\frac{s}{s^{2}-a^{2}} \\
& \\
& =\left\{\frac{1}{2} \mathcal{L}\left\{e^{a t h}\right\}-\frac{1}{2} \mathcal{L}\left\{e^{a t}\right\}\right. \\
& =
\end{aligned}
$$

Ex:

$$
\mathcal{L}\left\{e^{t^{2}}\right\}=\int_{0}^{\infty} e^{t^{2}} e^{-s t} d t=\int_{0}^{\infty} e^{t^{2}-s t} d t=\infty
$$

for any, value of s : as $t \rightarrow \infty, t^{2}-s t \rightarrow \infty$ for any $s \Rightarrow e^{t^{2}-s t} \rightarrow \infty$ as $t \rightarrow \infty$ for any
$s \Rightarrow \int_{0}^{\infty} e^{t^{2}-s t} d t \rightarrow \infty \quad \therefore$ Laplace transform of $e^{t^{2}}$ is undefined \Rightarrow $f(t)$ should not grow" too fast" as $t \rightarrow x$ for the Laplace transform of $f(t)$ to make sense.

We have the following table of Laplace Transforms we have computed solar:

$f(t)$	$F(s)$
$e^{a t}$	$\frac{1}{s-a}$
t^{h}	$\frac{n!}{s^{n+1}}$
$\cos a t$	$\frac{s}{s^{2}+a^{2}}$
$\sin a t$	$\frac{a}{s^{2}+a^{2}}$
$\sinh a t$	$\frac{a}{s^{2}-a^{2}}$
$\cosh a t$	$\frac{s}{s^{2}-a^{2}}$
$c_{1} g(t)+c_{2} h(t)$	$c_{1} G(s)+c_{2} H(s)$

Ex. $\quad \alpha\left\{t^{3}+4(t+1)^{2}+2 e^{1-t}+4 \cos 3 t\right\}$
Use the table:

$$
\begin{aligned}
& =\left\{\left\{t^{3}\right\}+4 \alpha\left\{(t+1)^{2}\right\}+2\left\{\left\{e^{1-t}\right\}+4\{\{\cos 3 t\}\right.\right. \\
& =\frac{3!}{s^{4}}+4 \alpha\left\{t^{2}+2 t+1\right\}+2 e\left\{\left\{e^{-t}\right\}+\frac{4 s}{s^{2}+9}\right. \\
& =\frac{3!}{s^{4}}+\frac{2 e}{s+1}+\frac{4 s}{s^{2}+9}+4 \alpha\left\{t^{2}\right\}+8 \alpha\{t\}+4 \alpha\{1\} \\
& =\frac{3!}{s^{4}}+\frac{2 e}{s+1}+\frac{4 s}{s^{2}+9}+\frac{4 \cdot 2!}{s^{3}}+\frac{8}{s^{2}}+\frac{4}{s}
\end{aligned}
$$

Ex: Find $\{\{f(t)\}$ where

$$
f(t)=\left\{\begin{array}{cl}
0, & t<0 \\
1, & t \in[0,1] \\
e^{1-t}, & t \in[1,2] \\
0, & t>2
\end{array}\right.
$$

The function is precewize-defined cannot use the table, weed to ese the definition of S.T. instead.

$$
\begin{aligned}
& \Rightarrow\left\{\{f(t)\}=\int_{0}^{\infty} f(t) e^{-s t} d t\right. \\
& =\int_{0}^{1} 1 \cdot e^{-s t} d t+\int_{1}^{2} e^{1-t} e^{-s t} d t \\
& =\int_{0}^{1} e^{-s t} d t+\int_{1}^{2} e e^{-(s+1) t} d t=\int_{0}^{1} e^{-s t} d t \\
& +e \int_{1}^{2} e^{-(s+1) t} d t=\left.\left(-\frac{1}{s} e^{-s t}\right)\right|_{0} ^{1}+\left.\left(-\frac{e}{s+1} e^{-(s+1)}\right)\right|_{1} ^{2} \\
& =-\frac{1}{s} e^{-s}+\frac{1}{s}-\frac{e}{s+1} e^{-2(s+1)}+\frac{e}{s+1} e^{-(s+1)}
\end{aligned}
$$

Note: $\lim _{s \rightarrow \infty} F(s)=\lim _{s \rightarrow \infty} \mathcal{L}\{f(t)\}$

$$
\begin{aligned}
= & \lim _{s \rightarrow \infty} \int_{0}^{\infty} f(t) e^{-s t} d t \\
= & \int_{0}^{\infty} f(t)\left(\lim _{s \rightarrow \infty} e^{-s t}\right) d t=\int_{0}^{\infty} f(t) \cdot 0 d t=0
\end{aligned}
$$

\therefore all transformed functions $\rightarrow 0$ as $5+\infty$

Inverse Transform: It turns ont that L.T. is invertible, that is, if $F(s)=\{\{f(t)\}$, then there is no other function of t, say $g(t)$ such that $\{\{g(t)\}=F(s)$. It follows that we can define the inverse transform va

$$
\mathcal{L}^{-1}\{F(s)\}=f(t) \text { if } \alpha\{f(t)\}=F(s)
$$

Appealing to the table of Laplace transforms above, we can immideately construct the table of inverse transforms:

$F(s)$	$\left\{^{-1}\{F(s)\}=f(t)\right.$
$\frac{1}{s-a}$	$e^{a t}$
$\frac{1}{s^{n}}$	$t^{n-1} /(n-1)!$
$\frac{s}{s^{2}+a^{2}}$	$\cos a t$
$\frac{a}{s^{2}+a^{2}}$	$\sin a t$

$$
\begin{array}{l|l}
\frac{s}{s^{2}-a^{2}} & \operatorname{coshat} \\
\frac{a}{s^{2}-a^{2}} & \text { sunhat } \\
c_{1} G(s)+c_{2} H(s) & c_{1} g(t)+c_{2} h(t)
\end{array}
$$

How to obtain the second line in the table?

$$
\mathcal{L}^{-1}\left\{\frac{1}{s^{n}}\right\}=f(t) \text {, such that }
$$

$\mathcal{L}\{f(t)\}=\frac{1}{s^{n}}$ - this looks similar to the RMS on the second line in the table of forwarded transforms:

$$
\begin{gathered}
\mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \Rightarrow \\
\\
\mathcal{L}\left\{t^{n-1}\right\}=\frac{(n-1)!}{s^{n}} \Rightarrow \frac{1}{(n-1)!} \mathcal{L}\left\{t^{n-1}\right\}=\frac{1}{s^{n}} \\
\Rightarrow \\
\Rightarrow\left\{\left\{\frac{t^{n-1}}{(n-1)!}\right\}=\frac{1}{s^{n}} \Rightarrow \mathcal{L}^{-1}\left\{\frac{1}{s^{n}}\right\}=\frac{t^{n-1}}{(n-1)!}\right. \\
\varepsilon x: \mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s-(-2)}\right\}=e^{-2 t}
\end{gathered}
$$

Ex: $\quad \mathcal{L}^{-1}\left\{\frac{3}{s-4}\right\}=3 \mathcal{L}^{-1}\left\{\frac{1}{s-4}\right\}=3 e^{4 t}$
$\left.\left.\varepsilon x: \quad \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+\varphi}\right\}=\mathcal{L}^{-1}\right\} \frac{1}{2} \frac{2}{s^{2}+\varphi}\right\}$

$$
=\frac{1}{2} \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+4}\right\}=\frac{1}{2} \sin 2 t
$$

$\varepsilon x: \quad \mathcal{L}^{-1}\left\{\frac{6 s+4}{s^{2}+9}\right\}=\mathcal{L}^{-1}\left\{\frac{6 s+4}{s^{2}+9}\right\}$
$=6 \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+9}\right\}+4 \mathcal{L}^{-1}\left\{\frac{1}{3} \frac{3}{s^{2}+9}\right\}$
$=6 \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+9}\right\}+\frac{4}{3} \mathcal{L}^{-1}\left\{\frac{3}{s^{2}+9}\right\}=6 \cos 3 t+\frac{4}{3} \sin 3 t$
Ex: $\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+3 s+2}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{(s+1)(s+2)}\right\}$

$$
\left.\left.=\mathcal{L}^{-1}\left\{\frac{A}{s+1}+\frac{B}{s+2}\right\}=A \mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\}+B \alpha^{-1}\right\} \frac{1}{s+2}\right\}
$$

$$
=A e^{-t}+B e^{-2 t}
$$

Using partial fractions to find A and B :

$$
\begin{aligned}
& \frac{1}{s^{2}+3 s+2}=\frac{A}{s+1}+\frac{B}{s+2}=\frac{A(s+2)+B(s+1)}{s^{2}+3 s+2} \Rightarrow \\
& A(s+2)+B(s+1)=1: \\
& \\
& \quad s=-2 \Rightarrow B(-1)=1 \Rightarrow B=-1 \\
& \\
& s=-1 \Rightarrow A \cdot 1=1=A=1
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\Rightarrow \mathcal{L}^{-1}\right\} \frac{1}{s^{2}+3 s+2}\right\}=e^{-t}-e^{-2 t} \\
& \varepsilon x: \mathcal{L}^{-1}\left\{\frac{3}{s^{2}(s-1)}\right\}=\mathcal{L}^{-1}\left\{\frac{A+B s}{s^{2}}+\frac{c}{s-1}\right\} \\
& \left.\left.=A \mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}+B \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}+C \mathcal{L}^{-1}\right\} \frac{1}{s-1}\right\} \\
& =A \frac{t^{2-1}}{(2-1)!}+B \frac{t^{1-1}}{(1-1)!}+c e^{t}=A t+B+C e^{-t}
\end{aligned}
$$

Partial fractions: $\quad \frac{A+B s}{s^{2}}+\frac{c}{s-1}=\frac{3}{s^{2}(s-1)}$

$$
\begin{aligned}
& \Rightarrow(A+B s)(s-1)+C s^{2}=3 \\
& \Rightarrow B s^{2}+A s-B s-A+C s^{2}=3 \text { for all } s \\
& \Rightarrow(B+C) s^{2}+(A-B) s-A=3 \text { for all } s \\
& \Rightarrow\left\{\begin{array}{l}
B+C=0 \\
A-B=0 \Rightarrow A=-3, B=-3, C=3 \\
-A=3
\end{array}\right. \\
& \mathcal{L}^{-1}\left\{\frac{3}{s^{2}(s-1)}\right\}=-3 t-3+3 e^{-t}
\end{aligned}
$$

