The method of undetermined coefficients often does not work. Consider, for example, the equation

$$
y^{\prime \prime}+y=\sec x
$$

If we guess that a particular solution looks like $y_{p}(x)=A \sec x$, then taking the derivative, we have

$$
y_{t}^{\prime}=A \sec x \tan x
$$

which cannot be balanced by sect; of we try instead

$$
y_{p}=A \sec x+B \sec x \tan x
$$

this would not work either for the same reason: derivatives of this y_{p} cannot be balanced by functions out of which y_{t} is composed. A different method is needed.

The new method (called variation of parameters) works as follows.

Step 1: Solve the homogeneous equation:

$$
\begin{aligned}
& y^{\prime \prime}+y=0 \Rightarrow r^{2}+1=0 \Rightarrow r=\sqrt{-1}= \pm i \\
& \Rightarrow y_{h}(x)=c_{1} \cos x+c_{2} \sin x
\end{aligned}
$$

Step 2: Replace c_{1} and c_{2} by untenown functions of $x, u_{1}(x)$ and $u_{2}(x)$ and set

$$
y_{f}(x)=u_{1}(x) \cos x+u_{2}(x) \sin x
$$

We want to determine u_{1} and u_{2} that make It $_{f}$ a particular solution of

$$
y^{\prime \prime}+y=\sec x
$$

Compute: $y_{p}^{\prime}(x)=u_{1}^{\prime} \cos x-4, \sin x+u_{2}^{\prime} \sin x$

$$
+u_{2} \cos x
$$

Now, because we cire looking for one solution of the ODE and we have two unknown functions, we can assume
that these functions satisfy any additional equation. We will set

$$
u_{1}^{\prime} \cos x+u_{2}^{\prime} \sin x=0
$$

then substituting this into (\#)

$$
y_{p}^{\prime}=-u_{1} \sin x+u_{2} \cos x
$$

Now, take the second derivative:

$$
y_{1}^{\prime \prime}=-u_{1}^{\prime} \sin x-u_{1} \cos x+u_{2}^{\prime} \cos x-u_{2} \sin x
$$

It follows that

$$
\begin{aligned}
y_{p}^{\prime \prime}+y_{p}= & -u_{1}^{\prime} \sin x-u_{x} \cos x+u_{2}^{\prime} \cos x-u_{2} \sin x \\
& +u_{1} \cos x+u_{3} \sin x=-u_{1}^{\prime} \sin x+u_{2}^{\prime} \cos x
\end{aligned}
$$

and because $y_{p}^{\prime \prime}+y_{p}=\sec x$, we get

$$
-u_{1}^{\prime} \sin x+u_{2}^{\prime} \cos x=\sec x
$$

Therefore u_{1}^{\prime} and u_{2}^{\prime} satisfy two equations

$$
\left\{\begin{array}{l}
u_{1}^{\prime} \cos x+u_{2}^{\prime} \sin x=0 \\
-u_{1}^{\prime} \sin x+u_{2}^{\prime} \cos x=\sec x
\end{array}\right.
$$

We solve this system for u_{1}^{\prime} and u_{2}^{\prime} : Multiplying the first equation by $\sin x$, the second by $\cos x$, and adding, we have

$$
\begin{aligned}
\sin x\left(u_{1}^{\prime} \cos x+u_{2}^{\prime} \sin x\right) & +\cos x\left(-u_{1}^{\prime s} / 4 x+u_{2}^{\prime} \cos x\right) \\
& =\cos x \cdot \sec x=1 \\
\Rightarrow & \left(\sin ^{2} x+\cos ^{2} x\right) u_{2}^{\prime}=1 \Rightarrow u_{2}^{\prime}=1 \Rightarrow u_{2}=x
\end{aligned}
$$

Now, from the first equation:

$$
\begin{gathered}
u_{1}^{\prime}=-u_{2}^{\prime} \tan x=-\tan x \\
\Rightarrow u_{1}=-\int \tan x d x=-\int \frac{\sin x}{\cos x} d x \frac{u=\cos x}{d u=-\sin x d x} \\
=\int \frac{d u}{u}=\ln |u|=\ln |\cos x|
\end{gathered}
$$

Notice that I am not adding arbitrary constants to either of the integrals above because I am looting for a single paitionlai solution. Therefore,

$$
y_{P}(x)=u_{1}(x) \cos x+u_{2}(x) \sin x=\cos x \ln |\cos x|+x \sin x
$$

In general, one does not need to remerben this procedure, but know the formula that results from if:
suppose the equation $a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$ has the general solution $y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$. and we want to find a particular soutron of $a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=f(x)$. Then

$$
\begin{aligned}
& y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) \text {, where } \\
& u_{1}^{\prime}=-\frac{y_{2} f}{w}, u_{2}^{\prime}=\frac{y_{1} f}{w}
\end{aligned}
$$

and $w\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$ is the wrouskian
Let's try to use this procedure on the example above:

$$
y^{\prime \prime}+y=\sec x
$$

Recall: $y_{h}=c_{1} \cos x+c_{2} \sin x$

$$
\Rightarrow y_{1}(x)=\cos x \text { and } y_{2}(x)=\sin x
$$

$$
\Rightarrow \quad w\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=\cos ^{2} x+\sin ^{2} x=1
$$

Because $f(x)=\sec x$:

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{y_{2} f}{w}=-\frac{\sin x \cdot \sec x}{1}=-\tan x \\
& u_{2}^{\prime}=\frac{y_{1} f}{w}=\frac{\cos x \sec x}{1}=1
\end{aligned}
$$

- the same equations as we saw above!

Ex. 1. $y^{\prime \prime}+y=\cos ^{2} x$
Step 1: Solve $y^{\prime \prime}+y=0 \Rightarrow$

$$
\begin{aligned}
& r^{2}+1=0 \Rightarrow T=\sqrt{-1}= \pm i \Rightarrow \\
& y_{h}=c_{1} \cos x+c_{2} \sin x \\
& y_{1}^{\prime \prime}
\end{aligned}
$$

Step 2: Varion of parameters:

$$
\begin{aligned}
& y_{p}=u_{1}(x) \cos x+u_{2}(x) \sin x \text {, where } \\
& u_{1}^{\prime}=-\frac{f y_{2}}{w}, u_{2}^{\prime}=\frac{f y_{1}}{w}
\end{aligned}
$$

$$
\begin{aligned}
& W(\cos x, \sin x)=\left|\begin{array}{r}
\cos x \sin x \\
-\sin x \cos x
\end{array}\right|=\cos ^{2} x \\
& +\sin ^{2} x=1 \\
& \Rightarrow \quad y_{1}^{\prime}=-\frac{\cos ^{2} x \sin x}{1}=-\cos ^{2} x \sin x \\
& u_{2}^{\prime}=\frac{\cos ^{2} x \cos x}{1}=\cos ^{3} x \\
& \Rightarrow u_{1}=-\int \cos ^{2} x \sin x d x \underset{d u=-\sin x d x}{=} \int u^{2} d u \\
& =\frac{4^{3}}{3}=\frac{\cos ^{3} x}{3} \\
& u_{2}=\int \cos ^{3} x d x=\int \cos ^{2} x \cos x d x \\
& =\int\left(1-\sin ^{2} x\right) \cos x d x \stackrel{u=\sin x}{=} \int\left(1-u^{2}\right) d u \\
& =4-\frac{4^{3}}{3}=\sin x-\frac{\sin ^{3} x}{3} \\
& \Rightarrow y_{p}=\frac{\cos ^{3} x}{3} \cos x+\left(\sin x-\frac{\sin ^{3} x}{3}\right) \sin x \\
& \Rightarrow y=c_{1} \cos x+c_{2} \sin x+\frac{\cos ^{4} x}{3}+\sin ^{2} x-\frac{\sin ^{4} x}{3}
\end{aligned}
$$

Exc: $y^{\prime \prime}-y=\frac{9 x}{e^{3 x}}$
step 1: $y^{\prime \prime}-y=0 \Rightarrow r^{2}-1=0 \Rightarrow r= \pm 1$

$$
\Rightarrow y_{h}(x)=c_{1} e^{-x}+c_{2} e^{x}
$$

Step 2: set $y_{p}=u_{1} e^{-x}+u_{2} e^{x}$

$$
\begin{aligned}
& w\left(e^{-x}, e^{x}\right)=\left|\begin{array}{c}
e^{-x} \\
-e^{x} \\
-e^{-x}
\end{array} e^{x}\right|=e^{-x} e^{x}+e^{x} e^{-x}=2 \\
& u_{1}^{\prime}=-\frac{y_{2} f}{w}=-\frac{e^{x} \cdot \frac{9 x}{e^{3 x}}}{2}=-\frac{1}{2} e^{x} \cdot 9 x e^{-3 x} \\
& \Rightarrow u_{1}^{\prime}=-\frac{9}{2} x e^{-2 x} \\
& u_{2}^{\prime}=\frac{y_{1} f}{w}=\frac{e^{-x} \cdot 9 x e^{-3 x}}{2}=\frac{9}{2} x e^{-4 x} \\
& u_{1}=\int\left(-\frac{9}{2} x e^{-2 x}\right) d x=-\frac{9}{2} \int x e^{-2 x} d x\left|\begin{array}{c}
v=x \\
\mid d w=e^{-2 d} d x=d x \\
w=-\frac{1}{2}-e^{-2 x}
\end{array}\right| \\
& =-\frac{9}{2}\left(-\frac{1}{2} x e^{-2 x}+\frac{1}{2} \int e^{-2 x} d x\right) \\
& =-\frac{9}{2}\left(-\frac{1}{2} x e^{-2 x}-\frac{1}{4} e^{-2 x}\right)=\frac{9}{4} e^{-2 x}\left(x+\frac{1}{2}\right) \\
& u_{2}=\int\left(\frac{9}{2} x e^{-4 x}\right) d x=\frac{9}{2} \int x e^{-4 x} d x\left|\begin{array}{l}
v=x \\
d w=e^{-4 x} d x \quad w=-\frac{1}{4} e^{-4 x}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{9}{2}\left(-\frac{1}{4} x e^{-4 x}+\frac{1}{4} \int e^{-4 x} d x\right) \\
& =\frac{9}{2}\left(-\frac{1}{4} x e^{-4 x}-\frac{1}{16} e^{-4 x}\right) \\
& =-\frac{9}{8} e^{-4 x}\left(x+\frac{1}{4}\right) \\
& \begin{aligned}
y_{f} & =4, e^{-x}+42 e^{x}=\left(\frac{9}{4} e^{-2 x}\left(x+\frac{1}{2}\right)\right) e^{-x} \\
& -\frac{9}{8} e^{-4 x}\left(x+\frac{1}{4}\right) e^{x} \\
& =\frac{9}{4} e^{-3 x}\left(x+\frac{1}{2}\right)-\frac{9}{8} e^{-3 x}\left(x+\frac{1}{4}\right) \\
& =\frac{9}{4} e^{-3 x}\left(x+\frac{1}{2}-\frac{1}{2}\left(x+\frac{1}{4}\right)\right) \\
& =\frac{9}{4} e^{-3 x}\left(\frac{1}{2} x+\frac{3}{8}\right)=\frac{9}{8} e^{-3 x}\left(x+\frac{3}{4}\right)
\end{aligned}
\end{aligned}
$$

On the other hand,

$$
y^{\prime \prime}-y=\frac{9 x}{e^{3 x}}=9 x e^{-3 x}
$$

Undetermined coefficients:

$$
\begin{aligned}
& y_{p}=(A x+B) e^{-3 x} \\
& \Rightarrow y_{p}^{\prime}=A e^{-3 x}+(A x+B)(-3) e^{-3 x}
\end{aligned}
$$

$$
\begin{aligned}
&=(A-3 A x-3 B) e^{-3 x} \\
& y_{p}^{\prime \prime}=-3 A e^{-3 x}+(A-3 A x-3 B)(-3) e^{-3 x} \\
&=-3 e^{-3 x}(A+A-3 A x-3 B) \\
& \Rightarrow y_{p}^{\prime \prime}-y_{P}=-3 e^{-3 x}(2 A-3 A x-3 B) \\
&-e^{-3 x}(A x+B)=9 x e^{-3 x} \\
&-3(2 A-3 A x-3 B)-(A x+B)=9 x \\
&-6 A+9 A x+9 B-A x-B=9 x \\
& \Rightarrow 8 A x+8 B-6 A=9 x \quad \text { for all } x \\
& \Rightarrow 8 A=9 \Rightarrow A=\frac{9}{8} \\
& \Rightarrow B-6 A=0 \Rightarrow 4 B-3 A=0 \Rightarrow B=\frac{3}{4} A \\
& \Rightarrow B=\frac{9}{8}=\frac{27}{32} \\
& y P=(A x+B) e^{-3 x}=\left(\frac{9}{8} x+\frac{27}{32}\right) e^{-3 x} \\
& y=\frac{9}{8}\left(x+\frac{3}{4}\right) e^{-3 x}
\end{aligned}
$$

