The University of Akron Department of Mathematics Differential Equations Spring 2023, Golovaty

REVIEW PROBLEMS FOR TEST 1

Problem 1. Verify whether the family $y = C_1 e^{2x} + C_2 e^{-x}$ of functions, where C_1 and C_2 are arbitrary constants is a two-parameter family of solutions of the ODE y'' - y' - 2y = 0. What is the order of the ODE? Is it linear or nonlinear?

Problem 2. For each of the following differential equations state the region in the xy-plane where the existence of a unique solution through any specific point is guaranteed by the existence and uniqueness theorem.

(a)
$$y' = (x^2 + y^2)^{1/2}$$
, (b) $(x + y)y' = x - y$.

Problem 3. Solve the given differential equation by separation of variables

(a)
$$y' = \frac{y}{x^2}$$
,
(b) $y' + y^2 \sin x = 0$,
(c) $y' = 1 + x + y^2 + xy^2$,
(d) $(1 + y^2)y' = x^2$.

Problem 4. Solve the given linear differential equation

(a)
$$x^2y' + 3xy = \frac{\sin x}{x}$$
, $x < 0$, (b) $y' + 2y/x = e^x/x$, $x > 0$,
(c) $y' + 3y = x + e^{-2x}$, (d) $y' - 2y = x^2 e^{2x}$.

Problem 5. Solve the given differential equation by using an appropriate substitution

(a)
$$y' = \frac{y-x}{y+x}$$
,
(b) $(y^2 + yx)dx + x^2dy = 0$,
(c) $xy' - y = \sqrt{x^2 + y^2}$,
(d) $x^2y' + 2xy - y^3 = 0$, $x > 0$.

Problem 6. Solve the given initial value problem by any method you wish

(a) $y' + 2y = xe^{-2x}$, y(1) = 0, (b) $y' = \frac{2x}{(y+x^2y)}$, y(0) = -2,

(c) $\sin 2x dx + \cos 3y dy = 0$, $y(\pi/2) = \pi/3$.

Problem 7. Show that if a and λ are positive constants, and b is any real number, then every solution of the equation

$$y' + ay = be^{-\lambda x},$$

has the property that $y \to 0$ as $x \to \infty$. *Hint*: Consider the cases $a = \lambda$ and $a \neq \lambda$ separately.

Problem 8. Consider a large tank holding 1000 L of water into which a brine solution of salt begins to flow at a rate of 6 L/min. The solution inside the tank is kept well stirred and is flowing out of the tank at a rate of 6 L/min. If the concentration of salt in the brine entering the tank is 1 kg/L, determine the concentration of salt in the tank after one hour.

Problem 9. Suppose that the temperature of the cup of coffee obeys Newton's law of cooling. If the coffee has a temperature of 200 degrees when freshly poured, and one minute later has cooled to 190 degrees in a room at 70 degrees, determine when the coffee reaches a temperature of 150 degrees.

Problem 10. If initially there are 50 grams of a radioactive substance and after 3 days there are only 10 grams remaining, what percentage of the original amount remains after 4 days?

Problem 11. Determine whether the given differential equation is exact. If it is exact, solve it.

(a) (2x+3) + (2y-2)y' = 0, (b) $(2xy^2 + 2y) + (2x^2y + 2x)y' = 0$, (c) (xlny + xy)dx + (ylnx + xy)dy = 0, x > 0, y > 0, (d) $\frac{dy}{dx} = -\frac{ax+by}{bx+cy}$.

Problem 12. Verify whether the functions $y_1(x) = e^{2x}$, $y_2(x) = e^{-x}$, and $y_3(x) = e^x$ form a fundamental family of solutions of the ODE y''' - 2y'' - y' + 2y = 0.

Problem 13. Verify whether the functions $f_1(x) = x^2$, $f_2(x) = 2x^2 - 3x$, $f_3(x) = x$, and $f_4(x) = 1$ are linearly independent. Do not use Wronskian to solve this problem.

Problem 14. Find a second solution of the differential equation $x^2y'' + 2xy' = 0$ by the method of reduction of order given that $y_1(x) = 1$ is a solution of the equation. For what range of x would you expect your solution to be valid?

<u>**Problem 15**</u>. Find a second solution of the given differential equation by the method of reduction of order

(a)
$$y'' - 4y' - 12y = 0$$
, $y_1(x) = e^{6x}$ (b) $x^2y'' + 3xy' + y = 0$, $x > 0$, $y_1(x) = x^{-1}$